Structural suppression of blister formation on the tungsten surface under + implantation with an energy of 30 keV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The influence of ultrafine-grained structure and cone-shaped surface morphology on the formation of blisters under irradiation of tungsten with He+ ions with energy of 30 keV has been studied. In comparative experiments, ultrafine-grained and fine-grained samples with an average grain size of 300 nm and 7 μm, respectively, with smooth and cone-shaped surface morphology were used. The ultrafine-grained structure in tungsten samples was obtained by severe plastic deformation, and the cone-shaped surface morphology was obtained by high-fluence irradiation with Ar+ ions with the energy of 30 keV. It was found that blisters are formed on both fine-grained and ultrafine-grained samples when irradiated with He+ ions with a fluence of 1018 ion/cm2. On the fine-grained samples, some of the blisters were with the lids removed, while in the ultrafine-grained samples, all blisters were intact. The thickness of the lids, diameter of the blisters depends on the grain size. The cone-shaped surface morphology on ultrafine-grained tungsten was found to suppress blister formation.

Full Text

Restricted Access

About the authors

R. Kh. Khisamov

Institute for Metals Superplasticity Problems RAS

Author for correspondence.
Email: r.khisamov@mail.ru
Russian Federation, Ufa

N. N. Andrianova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics; Moscow Aviation Institute

Email: r.khisamov@mail.ru
Russian Federation, Moscow; Moscow

A. M. Borisov

Institute for Metals Superplasticity Problems RAS; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics; Moscow Aviation Institute

Email: r.khisamov@mail.ru
Russian Federation, Ufa; Moscow; Moscow

M. А. Ovchinnikov

Institute for Metals Superplasticity Problems RAS; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: r.khisamov@mail.ru
Russian Federation, Ufa; Moscow

I. I. Musabirov

Institute for Metals Superplasticity Problems RAS

Email: r.khisamov@mail.ru
Russian Federation, Ufa

R. R. Timiryaev

Institute for Metals Superplasticity Problems RAS

Email: r.khisamov@mail.ru
Russian Federation, Ufa

R. R. Mulyukov

Institute for Metals Superplasticity Problems RAS

Email: r.khisamov@mail.ru
Russian Federation, Ufa

References

  1. Pitts R.A., Bonnin X., Escourbiac F., Frerichs H., Gunn J.P., Hirai T., Kukushkin A.S., Kaveeva E., Miller M.A., Moulton D., Rozhansky V., Senichenkov I., Sytova E., Schmitz O., Stangeby P.C., De Temmerman G., Veselova I., Wiesen S. // Nucl. Mater. Energy. 2019. V. 20. P. 100696. https://doi.org/10.1016/j.nme.2019.100696
  2. Martynenko Y.V., Nagel M.Y. // Plasma Phys. Rep. 2012. V. 38. P. 996. https://doi.org/10.1134/S1063780X12110074
  3. Kajita S., Kawaguchi S., Ohno N., Yoshida N. // Sci. Rep. 2018. V. 8. P. 56. https://doi.org/10.1038/s41598-017-18476-7
  4. Budaev V.P., Fedorovich S.D., Dedov A.V., Karpov A.V., Martynenko Y.V., Kavyrshin D.I., Gubkin M.K., Lukashevsky M.V., Lazukin A.V., Zakharenkov A.V., Sliva A.P., Marchenkov A.Y., Budaeva M.V., Tran Q.V., Rogozin K.A., Konkov A.A., Vasilyev G.B., Burmistrov D.A., Belousov S.V. // Plasma Discharge. Fusion Science and Technology. 2023. V. 79. Iss. 4. P. 404. https://doi.org/10.1080/15361055.2022.2118471
  5. Harutyunyan Z.R., Ogorodnikova O.V., Aksenova A.S., Gasparyan Y.M., Efimov V.S., Kharkov M.M., Kaziev A.V., Volkov N.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P. 1248. https://doi.org/10.1134/S1027451020060245
  6. Mulyukov R.R. // J. Vac. Sci. Technol. B. 2006. V. 24. P. 1061. https://doi.org/10.1116/1.2174024
  7. Wu Y-C., Hou Q-Q., Luo L-M., Zan X., Zhu X-Y., Li P., Xu Q., Cheng J-G., Luo G-N., Chen J-L. // J. Alloys Compd. 2019. V. 779. P. 926. https://doi.org/10.1016/j.jallcom.2018.11.279
  8. Efe M., El-Atwani O., Guo Y, Klenosky D.R. // Scr. Mater. 2014. V. 70. P. 31. https://doi.org/10.1016/j.scriptamat.2013.08.013
  9. El-Atwani O., Hattar K., Hinks J.A., Greaves G., Harilal S.S., Hassanein A. // J. Nucl. Mater. 2015. V. 458. P. 216. http://doi.org/10.1016/j.jnucmat.2014.12.095
  10. Chen Z., Niu L-L., Wang Z., Tian L., Kecskes L, Zhu K., Wei Q. // Acta Mater. 2018. V. 147. P. 100. https://doi.org/10.1016/j.actamat.2018.01.015
  11. Wurmshuber M., Doppermann S., Wurster S., Jakob S., Balooch M., Alfreider M., Schmuck K., Bodlos R., Romaner L., Hosemann P., Clemens H., Maier-Kiener V., Kiener D. // Int. J. Refract. Met. Hard Mater. 2023. V. 111. 106125. https://doi.org/10.1016/j.ijrmhm.2023.106125
  12. Qian W., Wei R., Zhang M., Chen P., Wang L., Liu X., Chen J., Ni W., Zheng P. // Mater. Lett. A. 2022. V. 308. P. 130921. https://doi.org/10.1016/j.matlet.2021.130921
  13. Cuomo J.J., Ziegler J.F., Woodall J.M. // Appl. Phys. Lett. 1975. V. 26. P. 557.
  14. Auciello O. // J. Vacuum Sci. Technol. 1981. V. 19. P. 841. http://doi.org/10.1116/1.571224
  15. Qin W., Ren F., Doerner R.P., Wei G., Lv Y., Chang S., Tang M., Deng H., Jiang C., Wang Y. // Acta Mater. 2018. V. 153. P. 147. https://doi.org/10.1016/j.actamat.2018.04.048
  16. Zhang Y., Ganeev A.V., Wang J.T., Liu J.Q., Alexandrov I.V. // Mater. Sci. Eng. A. 2009. V. 503. P. 37. https://doi.org/10.1016/j.msea.2008.07.074
  17. Yusupova N.R., Krylova K.A., Mulyukov R.R. // Lett. Mater. 2023. V. 13. Iss. 3. P. 255. https://doi.org/10.22226/2410-3535-2023-3-255-259
  18. Mulyukov R.R., Khisamov R.K., Borisov A.M., Baimiev A.Kh., Ovchinnikov M.A., Timiryaev R.R., Vladimirova A.A. // Lett. Mater. 2023. V. 13. Iss. 4s. P. 444. https://doi.org/10.22226/2410-3535-2023-4-373-376
  19. Danilenko V.N., Parkhimovich N.Y., Kiekkuzhina L.U., Gunderov D.V. // Lett. Mater. 2023. V. 13. Iss. 4. P. 373. https://doi.org/10.22226/2410-3535-2023-4-444-449
  20. Li P., Sun D-Z., Wang X., Xue K.-M., Hua R., Wu Y.-C. // Trans. Nonferrous Metals Society of China. 2018. V. 28. Iss. 3. P. 461. https://doi.org/10.1016/S1003-6326(18)64679-5
  21. Xue K., Guo Y., Zhou Y., Xu B., Li P. // Int. J. Refr. Met. Hard Mater. 2021. V. 94. P. 105377. https://doi.org/10.1016/j.ijrmhm.2020.105377
  22. Khisamov R.K., Andrianova A.A., Borisov A.M., Ovchinnikov M.A., Timiryaev R.R., Musabirov I.I., Mulyukov R.R. // Phys. Atomic Nuclei. 2023. V. 86. № 10. P. 2198. https://doi.org/10.1134/S1063778823100228
  23. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  24. Khisamov R.K., Andrianova A.A., Borisov A.M., Ovchinnikov M.A., Musabirov I.I., Timiryaev R.R., Mulyukov R.R. // Phys. Atomic Nuclei. 2024. V. 87. № 9. P. 1. https://doi.org/10.1134/S1063778824090151
  25. Andrianova N.N., Borisov A.M., Ovchinnikov M.A., Khisamov R.K, Mulyukov R.R. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. P. 478. https://doi.org/10.1134/S1062873823706141
  26. Xiao S., Ma Y., Tian L., Li M., Qi C., Wang B. // Nucl. Mater. Energy. 2020. V. 23. P. 100746. https://doi.org/10.1016/j.nme.2020.100746
  27. Zhang M., Zhao J., Meng X., Chen Z., Wang Q., Guan X. Wang T. // J. Nucl. Sci. Tech. 2021. V. 58: Iss. 10. P. 1071. https://doi.org/10.1080/00223131.2021.1911872
  28. Guseva M.I., Martynenko Y.V. // Sov. Phys. Usp. 1981. V. 24. P. 996. https://doi.org/10.1070/PU1981v024n12ABEH004758
  29. Behrisch R., Eckstein W. Sputtering by Particle Bombardment. Berlin, Heidelberg: Springer-Verlag, 2007. 509 p. https://doi.org/10.1007/978-3-540-44502-9
  30. Fan C., Pan S., Hu X., He B., Huang M. // Acta Materialia. 2023. V. 254. P. 118993. https://doi.org/10.1016/j.actamat.2023.118993
  31. EerNisse E.P., Picraux S.T. // J. Appl. Phys. 1977. V. 48. P. 9. https://doi.org/10.1063/1.323332
  32. Wei Q., Zhang H.T., Schuster B.E., Ramesh K.T., Valiev R.Z., Kecskes L.J., Dowding R.J., Magness L., Cho K. // Acta Materialia. 2006. V. 54. P. 4079. https://doi.org/10.1016/j.actamat.2006.05.005
  33. Xu A., Wei T., Short K., Palmer T., Ionescu M., Bhattacharyya D., Smith G.D.W., Armstrong D.E. J. // J. Mater Sci. 2023. V. 58. P. 10501. https://doi.org/10.1007/s10853-023-08647-5
  34. Allen F.I., Hosemann P., Balooch M. // Scripta Mater. 2020. V. 178. P. 256. https://doi.org/10.1016/j.scriptamat.2019.11.039
  35. Guseva М.I., Ivanov S.М., Martynenko Y.V. // J. Nucl. Mater. 1981. V. 96. P. 208. https://doi.org/10.1016/0022-3115(81)90235-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images obtained in the backscattered electron detection mode of the morphology of the initial (ingot) (a); ultrafine-grained (b); fine-grained (c) tungsten samples.

Download (61KB)
3. Fig. 2. SEM images obtained in the secondary electron detection mode of the surface of fine-grained (a) and ultrafine-grained (b, c) tungsten samples after irradiation with He+ ions.

Download (58KB)
4. Fig. 3. SEM images obtained in the secondary electron detection mode of the surface layer of fine-grained (a) and ultrafine-grained (b) tungsten samples irradiated with He+ ions.

Download (26KB)
5. Fig. 4. SEM images obtained in the secondary electron detection mode at an angle of 45°: fine-grained (a) and ultrafine-grained (b) tungsten samples after irradiation with Ar+ ions.

Download (72KB)
6. Fig. 5. SEM images obtained at an angle of 45°: fine-grained (a, b) and ultrafine-grained (c, d) tungsten samples after preliminary irradiation with Ar+ and subsequent irradiation with He+.

Download (107KB)

Copyright (c) 2025 Russian Academy of Sciences