Self-Forming Silicon Nitride Nanomask and Its Applications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Self-forming wave-ordered structure arises on the surface of single-crystal or amorphous silicon during its sputtering with an inclined beam of nitrogen ions. The wave-ordered structure is a solid nanomask, a dense array of silicon nitride nanostripes with a period in the range 30–90 nm. The induced spatial coherence of the nanomask due to the formation of sharp geometric boundaries on silicon surface in the areas of ion bombarded is considered. Based on the nanomask and etching processes (wet and dry), various nanostructures are formed, which are used in different high technologies. Prototypes of solar cells, nanowire grid polarizers, and nanostructured silicon substrates for surface-enhanced Raman spectroscopy have been created. The results of a study of the initial stages of lysozyme protein crystallization on nanostructured silicon substrates are presented.

Texto integral

Acesso é fechado

Sobre autores

V. Smirnov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Quantum Silicon LLC

Autor responsável pela correspondência
Email: smirnov@wostec.ru
Rússia, Yaroslavl, 150067; Moscow, 107078

D. Kibalov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Quantum Silicon LLC

Email: smirnov@wostec.ru
Rússia, Yaroslavl, 150067; Moscow, 107078

P. Lepshin

Quantum Silicon LLC

Email: smirnov@wostec.ru
Rússia, Moscow, 107078

I. Zhuravlev

Quantum Silicon LLC

Email: smirnov@wostec.ru
Rússia, Moscow, 107078

G. Smirnova

Quantum Silicon LLC

Email: smirnov@wostec.ru
Rússia, Moscow, 107078

Bibliografia

  1. Navez M., Sella C., Chaperot D. // C.R. Acad. Sci. Paris. 1962. V. 254. P. 240.
  2. Carter G., Vishnyakov V., Nobes M.J. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. P. 440. https://doi.org/10.1016/S0168-583X(95)01522-1
  3. Erlebacher J.D., Aziz M.J., Chason E., Sinclair M.B., Floro J.A. // Phys. Rev. Lett. 1999. V. 82. № 11. P. 2330. https://doi.org/10.1103/PhysRevLett.82.2330
  4. Elst K., Vandervorst J., Alay J., Snauwaer J., Hellemans L. // J. Vac. Sci. Technol. B. 1993. V. 11. № 6. P. 1968 https://doi.org/10.1116/1.586529
  5. Macko S., Frost F., Ziberi B., Forster D.F., Michely T. // Nanotechnology. 2010. V. 21. № 8. P. 085301. https://doi.org/10.1088/0957-4484/21/8/085301
  6. Vajo J.J., Doty R.E., Cirlin E.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 5. P. 2709. https://doi.org/10.1116/1.580192
  7. Alkemade P.F.A., Jiang Z.X. // J. Vac. Sci. Technol. B. 2001. V. 19. № 5. P. 1699. https://doi.org/10.1116/1.1389903
  8. Wittmaack K. // Surf. Sci. 1999. V. 419. P. 249.
  9. Смирнова М.А., Бачурин В.И., Чурилов А.Б. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. С. 8. https://doi.org/10.18721/JPM.153.301
  10. Kataoka Y., Wittmaack K. // Surf. Sci. 1999. V. 424. P. 299.
  11. Smirnov V.K., Kibalov D.S., Krivelevich S.A., Lepshin P.A., Potapov E.V., Yankov R.A., Skorupa W., Makarov V.V., Danilin A.B. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 147. P. 310. doi: 10.1016/S0168-583X(98)00610-7
  12. Смирнов В.К., Кибалов Д.С. // Тр. XIX междунар. конф. “Взаимодействие ионов с поверхностью ВИП-2009”. Звенигород, 2009. Т. 1. С. 36.
  13. Rudy A.S., Smirnov V.K. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 159. P. 52. https://doi.org/ 10.1016/S0168-583X(99)00490-5
  14. Bachurin V.I., Lepshin P.A., Smirnov V.K. // Vacuum. 2000. V. 56. № 4. P. 241. https://doi.org/10.1016/S0042-207X(99)00194-3
  15. Reisner W., Morton K.J., Riehn R., Wang Y.M., Yu Z., Rosen M., Sturm J.C., Chou S.Y., Frey E., Austin R.H. // Phys. Rev. Lett. 2005. V. 94. № 19–20. P. 196101. https://doi.org/ 10.1103/PhysRevLett.94.196101
  16. Унтила Г.Г., Кост Т.Н., Чеботарева А.Б., Белоусов М.Э., Самородов В.А., Поройков А.Ю., Тимофеев М.А., Закс М.Б., Ситников А.М., Солодуха О.И. // Физика и техника полупроводников. 2011. Т. 45. Вып. 3. С. 379.
  17. Унтила Г.Г., Кост Т.Н., Чеботарева А.Б., Закс М.Б., Ситников А.М., Солодуха О.И. // Физика и техника полупроводников. 2005. Т. 39. Вып. 11. С. 1393.
  18. Beard M.C., Knutsen K.P., Yu P., Luther J.M., Song Q., Metzger W.K., Ellingson R.J., Nozik A.J. // Nano Lett. 2007. V. 7. № 8. P. 2506. https://doi.org/10.1021/nl071486l
  19. Nozik A.J. // Chem. Phys. Lett. 2008. V. 457. P. 3. https://doi.org/10.1016/j.cplett.2008.03.094
  20. Jacobs S., Levy M., Marchena E., Honsberg C.B. // Proc. 33rd IEEE Photovoltaic Specialists Conference. San Diego, 2008. P. 4922718. https://doi.org/10.1109/PVSC.2008.4922718
  21. Ahn S.W., Lee K.D., Kim J.S., Kim S.H., Park J.D., Lee S.H., Yoon P.W. // Nanotechnology. 2005. V. 16. P. 1874. https://doi.org/10.1088/0957-4484/16/9/076
  22. Kim S.H., Park J.-D., Lee K.-D. // Nanotechnology. 2006. V. 17. P. 4436. https://doi.org/10.1088/0957-4484/17/17/025
  23. George M.C., Wang B., Petrova R., Li H., Bergquist J. // Proc. SPIE. 2013. V. 8704. P. 87042E. https://doi.org/10.1117/12.2016221
  24. Pelletier V., Asakawa K., Wu M., Adamson D.H., Register R.A., Chaikin P.M. // Appl. Phys. Lett. 2006. V. 88. P. 211114. https://doi.org/10.1063/1.2206100
  25. Papalia J.M., Adamson D.H., Chaikin P.M., Register R.A. // J. Appl. Phys. 2010. V. 107. P. 084305. https://doi.org/10.1063/1.3354099
  26. Weber T., Kroker S., Käsebier T., Kley E.-B., Tünnermann A. // Appl. Opt. 2014. V. 53. № 34. P. 8140. https://doi.org/10.1364/AO.53.008140
  27. Siefke T., Kroker S., Pfeiffer K., Puffky O., Dietrich K., Franta D., Ohlídal I., Szeghalmi A., Kley E.-B., Tünnermann A. // Adv. Opt. Mater. 2016. V. 4. № 11. P. 1780. https://doi.org/ 10.1002/adom.201600250
  28. Schmidt M.S., Boisen A., Hübner J. // Proc. 8th IEEE Conference on Sensors. Christchurch, New Zealand, 2009. P. 1763. https://doi.org/10.1109/ICSENS.2009.5398468
  29. Кукушкин В.И., Гришина Я.В., Егоров С.В., Соловьев В.В., Кукушкин И.В. // Письма в ЖЭТФ. 2016. Т. 103. Вып. 8. С. 572. https://doi.org/10.7868/S0370274X16080038
  30. Zhang C., Jiang S.Z., Yang C., Li C.H., Huo Y.Y., Liu X.Y., Liu A.H., Wei Q., Gao S.S., Gao X.G., Man B.Y. // Sci. Rep. 2016. V. 6. P. 25243. https://doi.org/ 10.1038/srep25243
  31. Bandarenka H.V., Girel K.V., Zavatski S.A., Panarin A., Terekhov S.N. // Materials. 2018. V. 11. № 5. P. 852. https://doi.org/10.3390/ma11050852
  32. Nanev C.N., Saridakis E., Chayen N.E. // Sci. Rep. 2017. V. 7. P. 35821. https://doi.org/10.1038/srep35821
  33. Krauss I.R., Merlino A., Vergara A., Sica F. // Int. J. Mol. Sci. 2013. V. 14. P. 11643. https://doi.org/10.3390/ijms140611643
  34. Pechkova E., Bragazzi N.L., Nicolini C. // NanoWorld J. 2015. V. 1. № 2. P. 46. https://doi.org/10.17756/nwj.2015-006
  35. Pechkova E., Nicolini C. // NanoWorld J. 2018. V. 8. № 8. P. 48. https://doi.org/10.17756/nwj.2018-060
  36. Бойкова А.С., Дьякова Ю.А., Ильина К.Б., Марченкова М.А., Серегин А.Ю., Просеков П.А., Волковский Ю.А., Писаревский Ю.В., Ковальчук М.В. // Кристаллография. 2018. Т. 63. № 5. С. 703. https://doi.org/10.1134/S0023476118050065
  37. Pechkova E., Sartore M., Giacomelli L., Nicolini C. // Rev. Sci. Instrum. 2007. V. 78. P. 093704. https://doi.org/10.1063/1.2785032
  38. Дьякова Ю.А., Ковальчук М.В. // Кристаллография. 2022. Т. 67. № 5. С. 831. https://doi.org/10.31857/S0023476122050034
  39. Попов А.М., Дороватовский П.В., Мамичев Д.А., Марченкова М.А., Николаева А.Ю. // Кристаллография. 2019. Т. 64. № 2. С. 259. https://doi.org/10.1134/S002347611902022X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure and topology of the wave-shaped nanostructure: a - SEM-image of the cross-section (λ = 130 nm) of nanostrips from amorphous silicon nitride a-SiN (1) and sublayer from amorphous silicon a-Si (2) on monocrystalline silicon c-Si (3), the direction of nitrogen ions flow is indicated (4); b, c - SEM-images (top view), λ = 30 and 80 nm, respectively. Horizontal field of view size: a - 700 nm; b - 1.32 μm; c - 4 μm.

Baixar (809KB)
3. Fig. 2. SEM images of nanostructured silicon samples obtained from a nanomask fabricated in a multistep process and anisotropic alkaline etching of silicon: a - Si(110); b - Si(100); c - Si(110); d - Si(113). Top view (a) and at an angle of 70° (b-d). Structure period λ: 40 (a-c); 80 nm (d). Horizontal field of view in the images: a - 2.347; b - 293.3; c - 293.3; d - 586.7 nm.

Baixar (1MB)
4. Fig. 3. SEM images (top view) of nanomask samples fabricated in a multistep process after silicon etching: a - liquid etching, λ = 50 nm; b - reactive ion etching at a depth of 150 nm, λ = 80 nm.

Baixar (912KB)
5. Fig. 4. Spectral dependence of the increment of internal quantum yield (∆Qi) for different samples of prototype solar cells (1-3) based on ‘black silicon’ nanostructure (a). SEM image of a chipped solar cell sample (70° view): 4 - a layer of transparent conducting oxide encircling the sharp tops of silicon nanorods 5 (b). The size of the field of view horizontally is 586.7 nm.

Baixar (427KB)
6. Fig. 5. SEM images (top views (a, c) and 82° chipping (b, d)) of nanowire polariser samples: a, b - an array of quartz nanorod nanorods based on a nanomask fabricated in a multistep process with a period λ = 90 nm coated with an Al layer on the right side (visible light region); c, d - an array of a-Si nanorods based on a conventional nanomask with a period λ = 70 nm on the quartz surface (UV region of the spectrum). The surfaces of the chips are coated with a thin layer of gold 10 nm thick. Horizontal field of view size: a - 4; b - 2; c - 4; d - 1.8 µm.

Baixar (1MB)
7. Fig. 6. SEM image (top view) of a sample substrate for surface-enhanced SEM, obtained on the basis of a dense array of silicon nanopixels with a sputtered silver layer. The horizontal field of view size is 1.2 μm.

Baixar (213KB)
8. Fig. 7. Nanostructured substrate for protein film growth: a - SEM image (at an angle of 70°) of a chipped Si(113) nanostructure obtained on the basis of a nanomask fabricated in a multistep process, with a period λ = 40 nm and liquid anisotropic etching of silicon Si(113), horizontal field of view size 234. 7 nm; b - AFM image of the surface of lysozyme protein film (scan 640 × 640 nm) deposited on the surface of Si(113) nanostructure; c - enlarged fragment of the upper part of the 180 × 130 nm AFM image: 1 - nanochannel; 2 - nanostrip; 3 - individual lysozyme globule; 4 - linear chain of lysozyme globules.

Baixar (635KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024