Analysis of Crystalline Phases of Electroactive Forms of Copolymer Composite of Polyvinylidene Fluoride and Tetrafluoroethylene with Nanographite
- 作者: Bachurin V.I.1, Savinsky N.G.1, Khramov A.P.2, Smirnova M.A.1, Selyukov R.V.1
-
隶属关系:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Demidov Yaroslavl State University
- 期: 编号 11 (2024)
- 页面: 58-68
- 栏目: Articles
- URL: https://ter-arkhiv.ru/1028-0960/article/view/681225
- DOI: https://doi.org/10.31857/S1028096024110075
- EDN: https://elibrary.ru/REPWFG
- ID: 681225
如何引用文章
详细
The influence of the crystallization conditions of vinylidene fluoride (VDF) copolymer with tetrafluoroethylene (TFE) (F-42) from aprotic solvents dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) under isothermal conditions at 60, 90, 150°C on the phase composition of the films was studied. The content of crystalline phases in F-42 films was studied using Fourier infrared spectroscopy, Raman spectroscopy, and X-ray phase analysis. The effect of filling copolymer films with nanographite on crystallinity phases was investigated. Filling with nanographite changes the crystal structure of polymer piezoelectric films and their piezoelectric properties, forming high-content electroactive β- and γ-phases during crystallization from 5 wt% solutions of aprotic solvents. Some features of the analysis of the content of crystalline allotropic phases by the above methods were found. The total content of crystalline electroactive phases of the VDF/TFE copolymer during isothermal crystallization from DMSO and DMF was 96–98%, while the content of the β-phase was 75–80%.
全文:

作者简介
V. Bachurin
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
编辑信件的主要联系方式.
Email: vibachurin@mail.ru
俄罗斯联邦, Yaroslavl, 150067
N. Savinsky
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Email: vibachurin@mail.ru
俄罗斯联邦, Yaroslavl, 150067
A. Khramov
Demidov Yaroslavl State University
Email: artem.khramov.99.99@mail.ru
俄罗斯联邦, Yaroslavl, 150003
M. Smirnova
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Email: vibachurin@mail.ru
俄罗斯联邦, Yaroslavl, 150067
R. Selyukov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Email: vibachurin@mail.ru
俄罗斯联邦, Yaroslavl, 150067
参考
- Наумова О.В., Генералов В.М., Зайцева Э.Г., Латышев А.В., Асеев А.Л., Пьянков С.А., Сафатов А.С. // Микроэлектроника. 2021. Т. 50. С. 166. https://doi.org/10.31857/S0544126921030066
- Weinhold S., Litt M.H., Lando J.B. // Macromolecules. 1980. V. 13. P. 1178. https://doi.org/10.1063/1.327425
- Bužarovska A., Kubin M., Makreski P., Zanoni M., Gasperini L., Selleri G., GualandiС. // J. Polymer Res. 2022. V. 29. № 7. P. 272. https://doi.org/10.1007/s10965-022-03133-z
- Singh P., Borkar H., Singh B.P., Singh V.N., Kumar A. // AIP Adv. 2014. V. 4. № 8. P. 4. https://doi.org/10.1063/1.4892961
- Guo S., Duan X., Xie M., Aw K.C., Xue Q. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.20944/preprints202011.0262.v1
- Liu Y., Aziguli H., Zhang B., Xu W., Lu W., Bernholc J., Wang, Q. // Nature. 2018. V. 562. № 7725. P. 96. https://doi.org/10.1038/s41586-018-0550-z
- Ramaiah N., Raja V., Ramu C. // Oriental J. Chem. 2021. V. 37. № 5. P. 1. https://doi.org/10.13005/ojc/370513
- Guo S., Duan X., Xie M., Aw K.C., Xue Q.G. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.3390/mi11121076
- Davis G.T., McKinney J.E., Broadhurst M.G., Roth S. // J. Appl. Phys. 1978. V. 49. P. 4998. https://doi.org/10.1063/1.324446
- Grushevski E., Savelev D., Mazaletski L., Savinski N., Puhov D. // J. Phys. Conf. Ser. 2021. V. 2086. P. 012014. https://doi.org/10.1088/1742-6596/2086/1/012014
- Furukawa T. // Phase Transitions: A Multinational J. 1989. V. 18. P. 143. https://doi.org/10.1080/01411598908206863
- Живулин В.Е., Хайранов Р.Х., Злобина Н.А., Песин Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 11. С. 36. https://doi.org/10.31857/S1028096020110175
- Живулин В.Е., Евсюков С.Е., Чалов Д.А., Морилова В.М., Андрейчук В.П., Хайранов Р.Х., Маргамов И.Г., Песин Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 9. С. 3. https://doi.org/10.31857/S1028096022090217
- Тарасов А.В. Взаимодействие фторполимера (сополимера тетрафторэтилена и винилиденфторида) с переходными металлами (Ta, Nb, Ti, W, Mo, Re): Автореф. дис. … канд. хим. наук: 02.00.04. М.: ИОНХ, 2010. 119 с.
- Gregorio J.R., Cestari M. // J. Polymer Sci. B. 1994. V. 32. № 5. P. 859. https://doi.org/10.1002/polb.1994.0903205
- Benz M., Euler W.B. // J. Аppl. Рolymer. Sci. 2003. V. 89. P. 1093. https://doi.org/10.1002/app.12267
- Shaik H., Rachith S.N., Rudresh K.J., Sheik A.S., Raman K.H.T., Kondaiah P., Mohan G. // J. Polym. Res. 2017. V. 24. Р. 1. https://doi.org/10.1007/s10965-017-1191-x
- Li X., Wang Y., He1 T., Hu Q., Yang Y. // J. Mater. Sci.: Mater. Electronics. 2019. V. 30. Р. 20174. https://doi.org/10.1007/s10854-019-02400-y
- Li Y., Xu J.Z., Zhu L., Zhong G.J., Li Z.M. // J. Phys. Chem. B. 2012. V. 116. P. 14951. https://doi.org/10.1021/jp3087607
- Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. P. 15382. https://doi.org/10.1039/c7ra01267e
- Li X., Wang Y., He T., Hu Q., Yang Y. // J. Mater. Sci.: Mater. Electronics. 2019. V. 30. P. 20174. https://doi.org/0.1007/s10854-019-02400-y
- Chen C., Cai F., Zhu Y., Liao L., Qian J., Yuan F.G., Zhang N. // Smart Mater. Struct. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-665X/ab15b7
- Vasic N., Steinmetz J., Görke M., Sinapius M., Hühne C., Garnweitner G. // Polymers. 2021. V. 13. P. 3900. https://doi.org/10.3390/polym13223900
- BoccaccioT., BottinoA., CapannelliG., PiaggioP. // J. Membrane Sci. 2002. V. 210. P. 315. https://doi.org/10.1016/s0376-7388(02)00407-6
- Simoes R.D., Job A.E., Chinaglia D.L., Zucolotto V., Camargo‐Filho J.C., Alves N., Constantino C.J.L. // J. Raman Spectrosc. 2005. V. 36. P. 1118. https://doi.org/10.1002/jrs.1416
- Ueda A., Ali O., Zavalin A., Avanesyan S., Collins W.E. // Biosensors and Bioelectronics Open Access. 2018. V. 2018. P. BBOA-111. https://doi.org/10.29011/BBOA-111.100011
- Kobayashi M., Tashiro K., Tadokoro H. // Macromolecules. 1975. V. 8. P. 158. https://doi.org/10.1021/ma60044a013
- Miranda T., Riosbaasa V., Lohb K.J., O’Bryanc G., Loyola B.R. // Proc. SPIE. 2014. V. 9061. P. 235. https://doi.org/10.1117/12.2045430
- Chapron D., Rault F., Talbourdet A., Lemort G., Cochrane C., Bourson P., Devaux E., Campagne C. // J. Raman Spectrosc. 2021. https://doi.org/10.1002/jrs.6081. HAL Id: hal-03163716. https://hal.univ-lorraine.fr/hal-03163716
- Job A.E., Simoes R.D., J.A. Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi J.G., Chinaglia D.L., Constantino C.J.L. // Appl. Spectrosc. 2005. V. 59. P. 275. https://doi.org/10.1366/000370205358533
- Кочервинский В.В., Сульянов С.Н. // ФТТ. 2006. Т. 48. С. 1016. http://journals.ioffe.ru/articles/viewPDF/3441
- Кочервинский В.В., Малышкина И.А., Воробьев Д.В., Бессонова Н.П. // ФТТ. 2010. Т. 52. С. 1841. http://journals.ioffe.ru/articles/viewPDF/1979
- Кочервинский В.В. // Russ. Chem. Rev. 1996. V. 65. P. 865. https://doi.org/ 10.1070/RC1996v065n10ABEH000328
- Кочервинский В.В., Мурашева Е.М. // Высоком. соединения. А. 1991. Т. 33. № 10. С. 2096.
- Кочервинский В.В., Киселев Д.А., Малинкович М.Д., Павлов А.С., Козлова Н.В., Шмакова Н.А. // Высокомол. соединения. А. 2014. Т. 56. С. 53. https://doi.org/10.7868/S2308112014010064
补充文件
