Sputtering Yields for Single Crystal Samples of PbX (X = S, Se, Te) with Different Crystallographic Orientations
- Autores: Zimin S.P.1,2, Amirov I.I.1, Mazaletsky L.A.1,2, Kolesnikov N.N.3, Timonina A.V.3
-
Afiliações:
- Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
- Demidov Yaroslavl State University
- Institute of Solid State Physics of the RAS
- Edição: Nº 11 (2024)
- Páginas: 41-48
- Seção: Articles
- URL: https://ter-arkhiv.ru/1028-0960/article/view/681223
- DOI: https://doi.org/10.31857/S1028096024110052
- EDN: https://elibrary.ru/RESSJS
- ID: 681223
Citar
Resumo
A study was carried out on sputtering yields for PbX (X = S, Se, Te) single crystals with (100) orientation and PbTe and PbSe single-crystal films with (111) orientation under ion-plasma bombardment with argon ions. The PbX single crystals were grown by the vertical zone melting method and oriented along the [100] growth axis. Single-crystal films of lead chalcogenides 2–4 μm thick with an orientation [111] relative to the normal to the substrate were formed by molecular beam epitaxy on silicon substrates. The surface treatment was carried out in a high-density argon plasma reactor of a high-frequency inductive discharge (13.56 MHz) of low pressure at an average ion energy of 50, 100, 150 and 200 eV. Based on the comparative analysis of sputtering rates, it was shown that for the (100) orientation, the sputtering yields for lead telluride were lower compared to lead sulfide and lead selenide. The sputtering yields for PbTe and PbSe for the (111) crystallographic orientation was found to be higher compared to (100) orientation.
Texto integral

Sobre autores
S. Zimin
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University
Autor responsável pela correspondência
Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067; Yaroslavl, 150003
I. Amirov
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS
Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067
L. Mazaletsky
Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University
Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067; Yaroslavl, 150003
N. Kolesnikov
Institute of Solid State Physics of the RAS
Email: zimin@uniyar.ac.ru
Rússia, Chernogolovka, 142432
A. Timonina
Institute of Solid State Physics of the RAS
Email: zimin@uniyar.ac.ru
Rússia, Chernogolovka, 142432
Bibliografia
- Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS. М.: Наука, 1968. 383 с.
- Абрикосов Н.Х., Шелимова Л.Е. Полупроводниковые материалы на основе соединений А4В6. М.: Наука, 1975. 195 с.
- Александрова О.А., Максимов А.И., Мошников В.А., Чеснокова Д.Б. Халькогениды и оксиды элементов IV группы. Получение, исследование, применение. СПб: Технолит, 2008. 240 с.
- Зимин С.П., Горлачев Е.С. Наноструктурированные халькогениды свинца. Ярославль: Изд-во ЯрГУ, 2011. 232 с.
- Babaev A.A., Skurlov I.D., Timkina Y.A., Fedorov A.V. // Nanomaterials. 2023. V. 13. P. 1797. https://doi.org./10.3390/nano13111797
- Zhao X., Ma H., Cai H., Wei Z., Bi Y., Tang X., Qin T. // Materials. 2023. V. 16. P. 5790. https://doi.org./10.3390/ma16175790
- Ahmad W., He J., Liu Z., Xu K., Chen Z., Yang X., Li D., Xia Y., Zhang J., Chen C. // Adv. Mater. 2019. V. 31. P. 1900593. https://doi.org./10.1002/adma.201900593
- Mao X., Yu J., Xu J., Zhou J., Luo C., Wang L., Niu H., Xu J., Zhou R. // New J. Chem. 2020. V. 44. P. 505. https://doi.org./10.1039/C9NJ05344A
- Singh J., Singh S., Srivastava V., Sadanand, Yadav R.K., Lohia P., Dwivedi D.K. // Phys. Stat. Sol. A. 2023. V. 220. P. 2300275. https://doi.org./10.1002/pssa.202300275
- Shtern Yu., Sherchenkov A., Shtern M., Rogachev M., Pepelyaev D. // Mater. Today: Commun. 2023. V. 37. P. 107083. https://doi.org./10.1016/j.mtcomm.2023.107083
- Lavrentev M.G., Voronov M.V., Ivanov A.A., Panchenko V.P., Tabachkova N.Yu., Tapero M.K., Yarkov I.Yu. // Modern Electron. Mater. 2023. V. nine. P. 185. https://doi.org./10.3897/j.moem.9.4.116423
- Su Ch.-H. // Progress Cryst. Growth Charact. Mater. 2019. V. 65. Iss. 2. P. 47. https://doi.org./10.1016/j.pcrysgrow.2019.04.001
- Tavakoli Dastjerdi H., Tavakoli R., Yadav P., Prochowicz D., Saliba M., Tavakoli M.M. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 26047. https://doi.org./10.1021/acsami.9b08466
- Yang G., Weng B. // Mater. Sci. Semicond. Process. 2021. V. 124. P. 105596. https://doi.org./10.1016/j.mssp.2020.105596
- Zimin S., Gorlachev E., Amirov I. // Encyclopedia of Plasma Technology / Ed. Shohet J.L. New York: Taylor and Francis Group, CRC Press, 2017.
- Thommen K. // Z. Physik. 1958. V. 151. P. 144. https://doi.org./10.1007/BF01344211
- Comas J., Burleigh Cooper C. // J. Appl. Phys. 1966. V. 37. P. 2820. https://doi.org./10.1063/1.1782130
- Wilson I.H. // Surf. Interface Analysis. 1993. V. 20. P. 637. https://doi.org./10.1002/sia.740200805
- Schwarzl T., Heiß V., Kocher-Oberlehner G., Springholz G. // Semicond. Sci. Technol. 1999. V. 14. P. L11. https://doi.org./10.1088/0268-1242/14/2/003
- Zimin S.P., Amirov I.I., Gorlachev E.S. // Semicond. Sci. Technol. 2011. V. 26. P. 055018. https://doi.org./ 10.1088/0268-1242/26/5/055018
- Тoлпин К.А., Бачурин В.И., Юрасова В.Е. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2011. № 11. С. 101.
- Zayachuk D.M., Slynko V.E., Csik A. // Mater. Sci. Semicond. Process. 2018. V. 88. P. 103. https://doi.org./ 10.1016/j.mssp.2018.07.037
- Zimin S.P., Kolesnikov N.N., Amirov I.I., Naumov V.V., Gorlachev E.S., Kim S., Kim N.-H. // Crystals. 2022. V. 12. P. 111. https://doi.org./10.3390/cryst12010111
- Rahim M., Khiar A., Felder F., Fill M., Chappuis D., Zogg H. // Phys. Procedia. 2010. V. 3. Iss. 2. P.1145. https://doi.org./10.1016/j.phpro.2010.01.153
- Термические константы веществ. Т. 4. / Ред. Глушко В.П. М.: ВИНИТИ, 1971. 571 c.
- Бацанов С.С. // Журнал неорганической химии. 2007. Т. 52. № 8. С. 1307.
- Springholz G., Bauer G. // Phys. Stat. Sol. B. 2007. V. 244. P. 2752. https://doi.org./10.1002/pssb.200675616
- Борыняк Л.А., Величко А.А., Илюшин В.А., Остертак Д.И., Пейсахович Ю.Г., Филимонова Н.И. // Микроэлектроника. 2008. Т. 37. С. 169. (Borynyak L.A., Velichko A.A., Ilyushin V.A., Ostertak D.I., Peisakhovich Yu.G., Filimonova N.I. // Russian Microelectronics. 2008. Т. 37. № 3. С. 146. 28. Borynyak L.A., Velichko A.A., Ilyushin V.A., Ostertak D.I., Peisakhovich Yu.G., Filimonova N.I. // Russian Microelectronics. 2008. Т. 37. № 3. С. 146). https://doi.org./10.1134/S1063739708030025
- Zimin S.P., Gorlachev E.S., Amirov I.I., Zogg H., Abramof E., Rappl P.H.O. // Semicond. Sci. Technol. 2011. V. 26. Iss.10. P. 105003. https://doi.org./10.1088/0268-1242/26/10/105003
- Harper J.M.E. // Plasma Etching: An Introduction / Ed. Manos D.M., Flamm D.L. San Diego: Academic Press, 1989. 476 p.
- Brault P., Thomann A-L., Cavarroc M. // Eur. Phys. J. D. 2023. V. 77. P. 19. https://doi.org./10.1140/epjd/s10053-023-00592-x
- Sigmund P. // Phys. Rev. 1969. V. 184. P. 383. https://doi.org./10.1103/PhysRev.184.383
- Winterbon K.B. Ion Implantation Range and Energy Deposition Distributions. Vol. 2. New York–London: Plenum Press, 1975. 341 p.
- Nanda K.K. // Phys. Lett. A. 2020. V. 384. Iss. 26. P. 126645. https://doi.org./10.1016/j.physleta.2020.126645
- Зимин С.П., Горлачев Е.С., Дубов Г.А., Амиров И.И., Наумов В.В. // Тр. VIII междунар. науч. конф. “Радиационно-термические эффекты и процессы в неорганических материалах”. Томск, 2012. C. 148.
- Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids / Ed. Behrisch. Berlin–Heidelberg–New York: Springer, 1981. 281 p.
- Deringer V.L., Dronskowski R. // J. Phys. Chem. C. 2013. V. 117. P. 24455. https://doi.org./10.1021/jp408699a
- Deringer V.L., Dronskowski R. // J. Phys. Chem. C. 2016. V. 120. P. 8813. https://doi.org./10.1021/acs.jpcc.6b02173
- Зимин С.П., Амиров И.И., Тиванов М.С., Колесников Н.Н., Королик О.В., Ляшенко Л.С., Жигулин Д.В., Мазалецкий Л.А., Васильев С.В., Савенко О.B. // Физика твердого тела. 2023. Т. 65. Вып. 4. С. 692. https://doi.org./10.21883/FTT.2023.04.55310.21
Arquivos suplementares
