Sputtering Yields for Single Crystal Samples of PbX (X = S, Se, Te) with Different Crystallographic Orientations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A study was carried out on sputtering yields for PbX (X = S, Se, Te) single crystals with (100) orientation and PbTe and PbSe single-crystal films with (111) orientation under ion-plasma bombardment with argon ions. The PbX single crystals were grown by the vertical zone melting method and oriented along the [100] growth axis. Single-crystal films of lead chalcogenides 2–4 μm thick with an orientation [111] relative to the normal to the substrate were formed by molecular beam epitaxy on silicon substrates. The surface treatment was carried out in a high-density argon plasma reactor of a high-frequency inductive discharge (13.56 MHz) of low pressure at an average ion energy of 50, 100, 150 and 200 eV. Based on the comparative analysis of sputtering rates, it was shown that for the (100) orientation, the sputtering yields for lead telluride were lower compared to lead sulfide and lead selenide. The sputtering yields for PbTe and PbSe for the (111) crystallographic orientation was found to be higher compared to (100) orientation.

Texto integral

Acesso é fechado

Sobre autores

S. Zimin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Autor responsável pela correspondência
Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067; Yaroslavl, 150003

I. Amirov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067

L. Mazaletsky

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS; Demidov Yaroslavl State University

Email: zimin@uniyar.ac.ru
Rússia, Yaroslavl, 150067; Yaroslavl, 150003

N. Kolesnikov

Institute of Solid State Physics of the RAS

Email: zimin@uniyar.ac.ru
Rússia, Chernogolovka, 142432

A. Timonina

Institute of Solid State Physics of the RAS

Email: zimin@uniyar.ac.ru
Rússia, Chernogolovka, 142432

Bibliografia

  1. Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS. М.: Наука, 1968. 383 с.
  2. Абрикосов Н.Х., Шелимова Л.Е. Полупроводниковые материалы на основе соединений А4В6. М.: Наука, 1975. 195 с.
  3. Александрова О.А., Максимов А.И., Мошников В.А., Чеснокова Д.Б. Халькогениды и оксиды элементов IV группы. Получение, исследование, применение. СПб: Технолит, 2008. 240 с.
  4. Зимин С.П., Горлачев Е.С. Наноструктурированные халькогениды свинца. Ярославль: Изд-во ЯрГУ, 2011. 232 с.
  5. Babaev A.A., Skurlov I.D., Timkina Y.A., Fedorov A.V. // Nanomaterials. 2023. V. 13. P. 1797. https://doi.org./10.3390/nano13111797
  6. Zhao X., Ma H., Cai H., Wei Z., Bi Y., Tang X., Qin T. // Materials. 2023. V. 16. P. 5790. https://doi.org./10.3390/ma16175790
  7. Ahmad W., He J., Liu Z., Xu K., Chen Z., Yang X., Li D., Xia Y., Zhang J., Chen C. // Adv. Mater. 2019. V. 31. P. 1900593. https://doi.org./10.1002/adma.201900593
  8. Mao X., Yu J., Xu J., Zhou J., Luo C., Wang L., Niu H., Xu J., Zhou R. // New J. Chem. 2020. V. 44. P. 505. https://doi.org./10.1039/C9NJ05344A
  9. Singh J., Singh S., Srivastava V., Sadanand, Yadav R.K., Lohia P., Dwivedi D.K. // Phys. Stat. Sol. A. 2023. V. 220. P. 2300275. https://doi.org./10.1002/pssa.202300275
  10. Shtern Yu., Sherchenkov A., Shtern M., Rogachev M., Pepelyaev D. // Mater. Today: Commun. 2023. V. 37. P. 107083. https://doi.org./10.1016/j.mtcomm.2023.107083
  11. Lavrentev M.G., Voronov M.V., Ivanov A.A., Panchenko V.P., Tabachkova N.Yu., Tapero M.K., Yarkov I.Yu. // Modern Electron. Mater. 2023. V. nine. P. 185. https://doi.org./10.3897/j.moem.9.4.116423
  12. Su Ch.-H. // Progress Cryst. Growth Charact. Mater. 2019. V. 65. Iss. 2. P. 47. https://doi.org./10.1016/j.pcrysgrow.2019.04.001
  13. Tavakoli Dastjerdi H., Tavakoli R., Yadav P., Prochowicz D., Saliba M., Tavakoli M.M. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 26047. https://doi.org./10.1021/acsami.9b08466
  14. Yang G., Weng B. // Mater. Sci. Semicond. Process. 2021. V. 124. P. 105596. https://doi.org./10.1016/j.mssp.2020.105596
  15. Zimin S., Gorlachev E., Amirov I. // Encyclopedia of Plasma Technology / Ed. Shohet J.L. New York: Taylor and Francis Group, CRC Press, 2017.
  16. Thommen K. // Z. Physik. 1958. V. 151. P. 144. https://doi.org./10.1007/BF01344211
  17. Comas J., Burleigh Cooper C. // J. Appl. Phys. 1966. V. 37. P. 2820. https://doi.org./10.1063/1.1782130
  18. Wilson I.H. // Surf. Interface Analysis. 1993. V. 20. P. 637. https://doi.org./10.1002/sia.740200805
  19. Schwarzl T., Heiß V., Kocher-Oberlehner G., Springholz G. // Semicond. Sci. Technol. 1999. V. 14. P. L11. https://doi.org./10.1088/0268-1242/14/2/003
  20. Zimin S.P., Amirov I.I., Gorlachev E.S. // Semicond. Sci. Technol. 2011. V. 26. P. 055018. https://doi.org./ 10.1088/0268-1242/26/5/055018
  21. Тoлпин К.А., Бачурин В.И., Юрасова В.Е. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2011. № 11. С. 101.
  22. Zayachuk D.M., Slynko V.E., Csik A. // Mater. Sci. Semicond. Process. 2018. V. 88. P. 103. https://doi.org./ 10.1016/j.mssp.2018.07.037
  23. Zimin S.P., Kolesnikov N.N., Amirov I.I., Naumov V.V., Gorlachev E.S., Kim S., Kim N.-H. // Crystals. 2022. V. 12. P. 111. https://doi.org./10.3390/cryst12010111
  24. Rahim M., Khiar A., Felder F., Fill M., Chappuis D., Zogg H. // Phys. Procedia. 2010. V. 3. Iss. 2. P.1145. https://doi.org./10.1016/j.phpro.2010.01.153
  25. Термические константы веществ. Т. 4. / Ред. Глушко В.П. М.: ВИНИТИ, 1971. 571 c.
  26. Бацанов С.С. // Журнал неорганической химии. 2007. Т. 52. № 8. С. 1307.
  27. Springholz G., Bauer G. // Phys. Stat. Sol. B. 2007. V. 244. P. 2752. https://doi.org./10.1002/pssb.200675616
  28. Борыняк Л.А., Величко А.А., Илюшин В.А., Остертак Д.И., Пейсахович Ю.Г., Филимонова Н.И. // Микроэлектроника. 2008. Т. 37. С. 169. (Borynyak L.A., Velichko A.A., Ilyushin V.A., Ostertak D.I., Peisakhovich Yu.G., Filimonova N.I. // Russian Microelectronics. 2008. Т. 37. № 3. С. 146. 28. Borynyak L.A., Velichko A.A., Ilyushin V.A., Ostertak D.I., Peisakhovich Yu.G., Filimonova N.I. // Russian Microelectronics. 2008. Т. 37. № 3. С. 146). https://doi.org./10.1134/S1063739708030025
  29. Zimin S.P., Gorlachev E.S., Amirov I.I., Zogg H., Abramof E., Rappl P.H.O. // Semicond. Sci. Technol. 2011. V. 26. Iss.10. P. 105003. https://doi.org./10.1088/0268-1242/26/10/105003
  30. Harper J.M.E. // Plasma Etching: An Introduction / Ed. Manos D.M., Flamm D.L. San Diego: Academic Press, 1989. 476 p.
  31. Brault P., Thomann A-L., Cavarroc M. // Eur. Phys. J. D. 2023. V. 77. P. 19. https://doi.org./10.1140/epjd/s10053-023-00592-x
  32. Sigmund P. // Phys. Rev. 1969. V. 184. P. 383. https://doi.org./10.1103/PhysRev.184.383
  33. Winterbon K.B. Ion Implantation Range and Energy Deposition Distributions. Vol. 2. New York–London: Plenum Press, 1975. 341 p.
  34. Nanda K.K. // Phys. Lett. A. 2020. V. 384. Iss. 26. P. 126645. https://doi.org./10.1016/j.physleta.2020.126645
  35. Зимин С.П., Горлачев Е.С., Дубов Г.А., Амиров И.И., Наумов В.В. // Тр. VIII междунар. науч. конф. “Радиационно-термические эффекты и процессы в неорганических материалах”. Томск, 2012. C. 148.
  36. Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids / Ed. Behrisch. Berlin–Heidelberg–New York: Springer, 1981. 281 p.
  37. Deringer V.L., Dronskowski R. // J. Phys. Chem. C. 2013. V. 117. P. 24455. https://doi.org./10.1021/jp408699a
  38. Deringer V.L., Dronskowski R. // J. Phys. Chem. C. 2016. V. 120. P. 8813. https://doi.org./10.1021/acs.jpcc.6b02173
  39. Зимин С.П., Амиров И.И., Тиванов М.С., Колесников Н.Н., Королик О.В., Ляшенко Л.С., Жигулин Д.В., Мазалецкий Л.А., Васильев С.В., Савенко О.B. // Физика твердого тела. 2023. Т. 65. Вып. 4. С. 692. https://doi.org./10.21883/FTT.2023.04.55310.21

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM image of the etching step on the example of a single-crystal film of PbSe (111). The tilt angle of the sample at imaging is 70°.

Baixar (320KB)
3. Fig. 2. Dependences of sputtering coefficients on argon ion energy for single-crystal samples: PbSe(111) (1); PbTe(111) (2); PbS(100) (3); PbSe(100) (4); PbTe(100) (5).

Baixar (112KB)
4. Fig. 3. Surface morphology of PbSe(100) crystals after sputtering with argon ions with energy of 100 eV for 60 s. The sample tilt angle at imaging is 70°.

Baixar (457KB)
5. Fig. 4. Nanostructuring of the surface of PbTe(100) crystals after sputtering by argon ions with an energy of 200 eV for 60 s. Angle of inclination of the sample at imaging 0°.

Baixar (435KB)
6. Fig. 5. SEM image of the surface morphology of single crystal PbTe (a) and PbSe (b) structures with (111) orientation after treatment in argon plasma (Ei = 200 eV, t = 60 s).

Baixar (889KB)
7. Fig. 6. Formation of etch pits with dimensions of 20 × 10 μm on the surface of epitaxial films of lead telluride with (111) orientation by ion-plasma sputtering.

Baixar (412KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024