Influence of vacuum ultraviolet on changes in Fourier-transform infrared spectra, electrical and hydrophobic properties of a composite based on polyimide track membranes filled with silica

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Vacuum ultraviolet radiation is a part of ultraviolet radiation with a very short wavelength and is a component of cosmic radiation. Composite materials based on polyimide have great potential for protection against cosmic radiation. The paper presents the results of studies on the effect of vacuum ultraviolet radiation on a polyimide film, a polyimide track membrane and a composite material based on a polyimide track membrane filled with silicon dioxide nanofibers. Mass losses, dielectric properties, Fourier-transform infrared spectra and wettability of the studied samples before and after vacuum ultraviolet irradiation were studied. It was found that the lowest mass losses during vacuum ultraviolet irradiation are observed in a composite material based on a polyimide track membrane filled with SiO2; the dielectric constant of the composite film after vacuum ultraviolet irradiation increased by 65.8%. It was established that the effect of vacuum ultraviolet irradiation on the films under study is accompanied by the destruction of a small amount of the following bonds: C=O, C–O, C–C and C–N. At the same time, vacuum ultraviolet caused the least damage to the developed composite material. Analysis of the contact angle of the studied samples showed that the surface of the polyimide film, polyimide track membrane, composite material remained hydrophilic. No changes were detected in the structure of the film surface.

全文:

受限制的访问

作者简介

N. Cherkashina

Belgorod State Technological University named after V.G.Shukhov

Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod

V. Pavlenko

Belgorod State Technological University named after V.G.Shukhov

Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod

A. Ruchii

Belgorod State Technological University named after V.G.Shukhov

编辑信件的主要联系方式.
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod

S. Domarev

Belgorod State Technological University named after V.G.Shukhov

Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod

E. Forova

Belgorod State Technological University named after V.G.Shukhov

Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod

参考

  1. Boezio M., Munini R., Picozza P. // Prog. Particle Nucl. Phys. 2020. V. 112. P. 103765. https://www.doi.org/10.1016/j.ppnp.2020.103765
  2. Журавлева И.В. // Моделирование систем и процессов. 2019. Т. 12. № 3. С. 11. https://www.doi.org/10.12737/2219-0767-2019-12-3-11-16
  3. Павленко В.И., Черкашина Н.И., Носков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 2. С. 54. https://www.doi.org/10.31857/S1028096020110126
  4. Singh A.K., Bhargawa A. // Adv. Space Res. 2020. V. 65. № 7. P. 1831. https://www.doi.org/10.1016/j.asr.2020.01.006
  5. Новосадов Н.И. Разработка технологии производства полиимидного композита космического назначения. // Международная научно-техническая конференция молодых ученых, Белгород. 2020. С. 7104. https://elibrary.ru/item.asp?id44102902
  6. Lee J.H., Kim H.N., Jeong H.Y., Cho S.O. // Nucl. Engineering Technol. 2020. V. 52. № 8. P. 1817. https://www.doi.org/10.1016/j.net.2020.01.016
  7. Dobney W., Mols L., Mistry D., Tabury K., Baselet B., Baatout S. // Front. Nucl. Medicine. 2023. V. 3. https://www.doi.org/10.3389/fnume.2023.1225034
  8. Михайлов М.М., Горончко В.А., Лебедев С.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 7. С. 14. https://www.doi.org/10.31857/S1028096021070128
  9. Zhuo L., Cai Y., Shen D., Gou P., Wang M., Hu G., Xie F. // Chem. Engineering J. 2023. V. 451. P. 138808. https://www.doi.org/10.1016/j.cej.2022.138808
  10. Mehr H.M.S., Hammer T.J., Soucek M.D. // J. Coat. Technol. Res. 2021. V. 18. № 6. P. 1445. https://www.doi.org/10.1007/s11998-021-00470-4
  11. Yin L., He Y., Guo W., Wang S., He J., Wang T. // Adv. Composites Hybrid Mater. 2023. V. 6. № 6. P. 212. https://www.doi.org/10.1007/s42114-023-00795-1
  12. Tao K., Sun G., Zhang S., Wang J., Chen R., Han S. // Macromolecular Rapid Communications. 2023. P. 2300510. https://www.doi.org/10.1002/marc.202300510
  13. Gao M.Y., Zhai L., Mo S., Jia Y., Liu Y., He M.H., Fan L. // Chinese J. Polymer Sci. 2023. V. 41. № 12. P. 1921. https://www.doi.org/10.1007/s10118-023-2985-4
  14. Kausar A. // J. Thermoplastic Composite Mater. 2023. V. 36. № 12. P. 5034. https://www.doi.org/10.1177/089270572311735960
  15. Zhang Y., Dai S., Yin Z., Yan W., Li Q., Yuan H., Zhang Xu, Chen L., Luo J., Ouyang X., Liao B., Hao W., Zhu J. // SmartMat. 2023. P. 1225. https://www.doi.org/10.1002/smm2.1225
  16. Li H., Kong X., Wang S., Gong M., Lin X., Zhang L., Wang D. // Molecules. 2023. V. 28. № 7. P. 3095. https://www.doi.org/10.3390/molecules28073095
  17. Guo Y., Qiu H., Ruan K., Zhang Y., Gu J. // Nano-Micro Letters. 2022. V. 14. P. 1. https://www.doi.org/10.1007/s40820-021-00767-4
  18. Михайлов М.М., Горончко В.А. // Космические аппараты и технологии. 2022. Т. 6. № 2(40). С. 102. https://www.doi.org/10.26732/j.st.2022.2.04
  19. Мяленко Д.М. // Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством. 2020. Т. 1. № 1. С. 406. https://www.doi.org/10.37442/978-5-6043854-1-8-2020-1-406-411
  20. Lu W., Ren S., Zhang Y., Wen X., Zhang Z., Wang A. // Environmental Sci. Pollution Res. 2023. V. 30. № 57. P. 1. https://www.doi.org/10.1007/s11356-023-30612-7
  21. Кузин С.В., Богачев С.А., Кириченко А.С., Перцов А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 12. С. 31. https://www.doi.org/10.31857/S1028096023120117
  22. Dembska M., Renger T., Sznajder M. // Metallurgical Mater. Trans. A. 2020. V. 51. № 9. P. 4922. https://www.doi.org/10.1007/s11661-020-05906-x
  23. Shen Z.C., Ding Y.G., Wang Y.Z., He H.B. // J. Phys.: Conf. Series. 2021. V. 1765. № 1. P. 012024. https://www.doi.org/10.1088/1742-6596/1765/1/ 012024
  24. Feng J., Wang Y., Qin X., Lv Y., Huang Y., Yang Qi, Li G., Kong M. // Polymer Degradation and Stability. 2022. V. 199. P. 109915. https://www.doi.org/10.1016/j.polymdegradstab. 2022.109915
  25. Chen J., Zhao T., Zhou L., Xu B., Ju Y., Zhang Q., Wu, Z. // J. Macromolecular Sci. B. 2023. P. 1. https://www.doi.org/10.1080/00222348.2023.2272099
  26. Cherkashina N., Pavlenko V., Domarev S., Kashibadze N. // Chem. Engineering. 2023. V. 7. № 2. P. 32. https://www.doi.org/10.3390/chemengineering7020032
  27. Скурат В.Е. // Химия высоких энергий. 2019. Т. 53. № 1. С. 79. https://www.doi.org/10.1134/S0023119319010133
  28. Каманина Н.В., Тойкка А.С., Зверева Г.Н., Кужаков П.В., Барнаш Я.В., Тарасов С.А. // Жидкие кристаллы и их практическое использование. 2021. Т. 21. № 4. С. 47. https://www.doi.org/10.18083/LCAppl.2021.4.47
  29. Pavlenko V.I., Zabolotny V.T., Cherkashina N.I., Edamenko O.D. // Inorg. Mater.: Appl. Res. 2014. V. 5. № 3. P. 219. https://www.doi.org/10.1134/S2075113314030137
  30. Павленко В.И., Бондаренко Г.Г., Черкашина Н.И., Едаменко О.Д. // Перспективные материалы. 2013. № 3. С. 14.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the vacuum ultraviolet installation: 1 — spiral pump; 2 — bellows; 3 — inlet valve; 4 — valve; 5 — vacuum gauge; 6 — excimer lamps; 7 — ozone outlet; 8 — fan; 9 — fan casing; 10 — upper flange; 11 — loop; 12 — nitrogen supply flange; 13 — high-voltage units; 14 — low-voltage power supply; 15 — cooled platform.

下载 (26KB)
3. Fig. 2. SEM images of the original polyimide film (a), polyimide track membrane (b) and composite film (c).

下载 (63KB)
4. Fig. 3. Mass loss in samples of polyimide film (1), polyimide track membrane (2) and composite film (3) as a result of irradiation. The shaded areas correspond to the confidence interval of the measured value.

下载 (17KB)
5. Fig. 4. IR Fourier absorption spectrum of polyimide before (1) and after exposure to VUV radiation for 60 h (2).

下载 (32KB)
6. Fig. 5. IR Fourier absorption spectrum of a polyimide track membrane before (1) and after exposure to VUV radiation for 60 h (2).

下载 (32KB)
7. Fig. 6. IR Fourier absorption spectrum of a polyimide track membrane with silicon dioxide nanofibers before (1) and after exposure to VUV radiation for 60 h (2).

下载 (30KB)

版权所有 © Russian Academy of Sciences, 2024