Influence of vacuum ultraviolet on changes in Fourier-transform infrared spectra, electrical and hydrophobic properties of a composite based on polyimide track membranes filled with silica
- 作者: Cherkashina N.I.1, Pavlenko V.I.1, Ruchii A.Y.1, Domarev S.N.1, Forova E.V.1
-
隶属关系:
- Belgorod State Technological University named after V.G.Shukhov
- 期: 编号 9 (2024)
- 页面: 25-34
- 栏目: Articles
- URL: https://ter-arkhiv.ru/1028-0960/article/view/664744
- DOI: https://doi.org/10.31857/S1028096024090039
- EDN: https://elibrary.ru/EIPEJW
- ID: 664744
如何引用文章
详细
Vacuum ultraviolet radiation is a part of ultraviolet radiation with a very short wavelength and is a component of cosmic radiation. Composite materials based on polyimide have great potential for protection against cosmic radiation. The paper presents the results of studies on the effect of vacuum ultraviolet radiation on a polyimide film, a polyimide track membrane and a composite material based on a polyimide track membrane filled with silicon dioxide nanofibers. Mass losses, dielectric properties, Fourier-transform infrared spectra and wettability of the studied samples before and after vacuum ultraviolet irradiation were studied. It was found that the lowest mass losses during vacuum ultraviolet irradiation are observed in a composite material based on a polyimide track membrane filled with SiO2; the dielectric constant of the composite film after vacuum ultraviolet irradiation increased by 65.8%. It was established that the effect of vacuum ultraviolet irradiation on the films under study is accompanied by the destruction of a small amount of the following bonds: C=O, C–O, C–C and C–N. At the same time, vacuum ultraviolet caused the least damage to the developed composite material. Analysis of the contact angle of the studied samples showed that the surface of the polyimide film, polyimide track membrane, composite material remained hydrophilic. No changes were detected in the structure of the film surface.
全文:

作者简介
N. Cherkashina
Belgorod State Technological University named after V.G.Shukhov
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod
V. Pavlenko
Belgorod State Technological University named after V.G.Shukhov
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod
A. Ruchii
Belgorod State Technological University named after V.G.Shukhov
编辑信件的主要联系方式.
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod
S. Domarev
Belgorod State Technological University named after V.G.Shukhov
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod
E. Forova
Belgorod State Technological University named after V.G.Shukhov
Email: artiem.ruchii.99@mail.ru
俄罗斯联邦, 308012 Belgorod
参考
- Boezio M., Munini R., Picozza P. // Prog. Particle Nucl. Phys. 2020. V. 112. P. 103765. https://www.doi.org/10.1016/j.ppnp.2020.103765
- Журавлева И.В. // Моделирование систем и процессов. 2019. Т. 12. № 3. С. 11. https://www.doi.org/10.12737/2219-0767-2019-12-3-11-16
- Павленко В.И., Черкашина Н.И., Носков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 2. С. 54. https://www.doi.org/10.31857/S1028096020110126
- Singh A.K., Bhargawa A. // Adv. Space Res. 2020. V. 65. № 7. P. 1831. https://www.doi.org/10.1016/j.asr.2020.01.006
- Новосадов Н.И. Разработка технологии производства полиимидного композита космического назначения. // Международная научно-техническая конференция молодых ученых, Белгород. 2020. С. 7104. https://elibrary.ru/item.asp?id44102902
- Lee J.H., Kim H.N., Jeong H.Y., Cho S.O. // Nucl. Engineering Technol. 2020. V. 52. № 8. P. 1817. https://www.doi.org/10.1016/j.net.2020.01.016
- Dobney W., Mols L., Mistry D., Tabury K., Baselet B., Baatout S. // Front. Nucl. Medicine. 2023. V. 3. https://www.doi.org/10.3389/fnume.2023.1225034
- Михайлов М.М., Горончко В.А., Лебедев С.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 7. С. 14. https://www.doi.org/10.31857/S1028096021070128
- Zhuo L., Cai Y., Shen D., Gou P., Wang M., Hu G., Xie F. // Chem. Engineering J. 2023. V. 451. P. 138808. https://www.doi.org/10.1016/j.cej.2022.138808
- Mehr H.M.S., Hammer T.J., Soucek M.D. // J. Coat. Technol. Res. 2021. V. 18. № 6. P. 1445. https://www.doi.org/10.1007/s11998-021-00470-4
- Yin L., He Y., Guo W., Wang S., He J., Wang T. // Adv. Composites Hybrid Mater. 2023. V. 6. № 6. P. 212. https://www.doi.org/10.1007/s42114-023-00795-1
- Tao K., Sun G., Zhang S., Wang J., Chen R., Han S. // Macromolecular Rapid Communications. 2023. P. 2300510. https://www.doi.org/10.1002/marc.202300510
- Gao M.Y., Zhai L., Mo S., Jia Y., Liu Y., He M.H., Fan L. // Chinese J. Polymer Sci. 2023. V. 41. № 12. P. 1921. https://www.doi.org/10.1007/s10118-023-2985-4
- Kausar A. // J. Thermoplastic Composite Mater. 2023. V. 36. № 12. P. 5034. https://www.doi.org/10.1177/089270572311735960
- Zhang Y., Dai S., Yin Z., Yan W., Li Q., Yuan H., Zhang Xu, Chen L., Luo J., Ouyang X., Liao B., Hao W., Zhu J. // SmartMat. 2023. P. 1225. https://www.doi.org/10.1002/smm2.1225
- Li H., Kong X., Wang S., Gong M., Lin X., Zhang L., Wang D. // Molecules. 2023. V. 28. № 7. P. 3095. https://www.doi.org/10.3390/molecules28073095
- Guo Y., Qiu H., Ruan K., Zhang Y., Gu J. // Nano-Micro Letters. 2022. V. 14. P. 1. https://www.doi.org/10.1007/s40820-021-00767-4
- Михайлов М.М., Горончко В.А. // Космические аппараты и технологии. 2022. Т. 6. № 2(40). С. 102. https://www.doi.org/10.26732/j.st.2022.2.04
- Мяленко Д.М. // Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством. 2020. Т. 1. № 1. С. 406. https://www.doi.org/10.37442/978-5-6043854-1-8-2020-1-406-411
- Lu W., Ren S., Zhang Y., Wen X., Zhang Z., Wang A. // Environmental Sci. Pollution Res. 2023. V. 30. № 57. P. 1. https://www.doi.org/10.1007/s11356-023-30612-7
- Кузин С.В., Богачев С.А., Кириченко А.С., Перцов А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 12. С. 31. https://www.doi.org/10.31857/S1028096023120117
- Dembska M., Renger T., Sznajder M. // Metallurgical Mater. Trans. A. 2020. V. 51. № 9. P. 4922. https://www.doi.org/10.1007/s11661-020-05906-x
- Shen Z.C., Ding Y.G., Wang Y.Z., He H.B. // J. Phys.: Conf. Series. 2021. V. 1765. № 1. P. 012024. https://www.doi.org/10.1088/1742-6596/1765/1/ 012024
- Feng J., Wang Y., Qin X., Lv Y., Huang Y., Yang Qi, Li G., Kong M. // Polymer Degradation and Stability. 2022. V. 199. P. 109915. https://www.doi.org/10.1016/j.polymdegradstab. 2022.109915
- Chen J., Zhao T., Zhou L., Xu B., Ju Y., Zhang Q., Wu, Z. // J. Macromolecular Sci. B. 2023. P. 1. https://www.doi.org/10.1080/00222348.2023.2272099
- Cherkashina N., Pavlenko V., Domarev S., Kashibadze N. // Chem. Engineering. 2023. V. 7. № 2. P. 32. https://www.doi.org/10.3390/chemengineering7020032
- Скурат В.Е. // Химия высоких энергий. 2019. Т. 53. № 1. С. 79. https://www.doi.org/10.1134/S0023119319010133
- Каманина Н.В., Тойкка А.С., Зверева Г.Н., Кужаков П.В., Барнаш Я.В., Тарасов С.А. // Жидкие кристаллы и их практическое использование. 2021. Т. 21. № 4. С. 47. https://www.doi.org/10.18083/LCAppl.2021.4.47
- Pavlenko V.I., Zabolotny V.T., Cherkashina N.I., Edamenko O.D. // Inorg. Mater.: Appl. Res. 2014. V. 5. № 3. P. 219. https://www.doi.org/10.1134/S2075113314030137
- Павленко В.И., Бондаренко Г.Г., Черкашина Н.И., Едаменко О.Д. // Перспективные материалы. 2013. № 3. С. 14.
补充文件
