Layered Composite Materials Based on Ti/Ta/Hf/Ceramic to Solve Tasks under Extreme Conditions
- Autores: Kamynina O.K.1, Vadchenko S.G.2, Kovalev I.D.2, Prokhorov D.V.1
-
Afiliações:
- Osipyan Institute of Solid State Physics Russian Academy of Sciences
- Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
- Edição: Nº 9 (2023)
- Páginas: 44-51
- Seção: Articles
- URL: https://ter-arkhiv.ru/1028-0960/article/view/664505
- DOI: https://doi.org/10.31857/S1028096023090054
- EDN: https://elibrary.ru/ZKVWDG
- ID: 664505
Citar
Resumo
Layered composite materials Ti/Ta/Hf/ ceramic were produced via self-propagating high-temperature synthesis (SHS) of pre-structured samples using metal foils (Ti, Hf, Ta, Ni) and reaction tapes (Ti + 0.65C), (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes were prepared by cold rolling from powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were characterized by Scanning Electron Microscopy (SEM) and X-ray analysis. Their flexural strength was determined according to the scheme of three-point loading at temperatures of 25 and 1100°С. The microstructure analysis of produced materials showed that the joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermets and eutectic solutions provides the synthesized multilayer materials with good strength properties (up to 275 MPa at 25°С, up to 72 MPa at 1100°С). These results are of interest for the development of construction materials operating under extreme conditions.
Palavras-chave
Sobre autores
O. Kamynina
Osipyan Institute of Solid State Physics Russian Academy of Sciences
Autor responsável pela correspondência
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka
S. Vadchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka
I. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka
D. Prokhorov
Osipyan Institute of Solid State Physics Russian Academy of Sciences
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka
Bibliografia
- Xu Y., Zhu J., Wu Z., Cao Y., Zhao Y., Zhang W. // Adv. Compos. Hybrid Mater. 2018. V. 1. P. 460. https://doi.org/10.1007/s42114-018-0032-7
- Jadoon A.K. // J. Mater. Sci. 2004. V. 39. P. 593. https://doi.org/10.1023/B:JMSC.0000011516.43086.20
- Le V.T., Ha N.S., Goo N.S. // Composites. Part B. 2021. V. 226. P. 109301.https://doi.org/10.1016/j.compositesb.2021.109301
- Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
- Wang A., Gallino I., Riegler S.S., Lin Y.-T., Isaac N.A., Camposano Y.H.S., Matthes S., Flock D., Jacobs H.O., Yen H.-W., Schaaf P. // Mater. Design. 2021. V. 206. P. 109790. https://doi.org/10.1016/j.matdes.2021.109790
- Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. P. 203. https://doi.org/10.1080/09506608.2016.1243291
- Rogachev A.S., Vadchenko S.G., Nepapushev A.A., Rogachev S.A., Scheck Yu.B., Mukasyan A.S. // Adv. Eng. Mater. 2018. V. 20. P. 1701044. https://doi.org/10.1002/adem.201701044
- Buinevich V.S., Nepapushev A.A., Moskovskich D.O., Kuskov K.V., Yudin S.N., Mukasyan A.S. // Ceram. Int. 2021. V. 47. P. 30043. https://doi.org/10.1016/j.ceramint.2021.07.180
- Kurbatkina V.V., Patsera E.I., Levashov E.A. // Ceram. Int. 2019. V. 45. P. 4067. https://doi.org/10.1016/j.ceramint.2018.10.113
- Chen G., Yin J., Zhao S., Tang H., Qu X. // Int. J. Refr. Met. Hard Mater. 2019. V. 81. P. 71. https://doi.org/10.1016/j.ijrmhm.2019.02.020
- Bataev V.A., Golkovski M.G., Samoylenko V.V., Ruktuev A.A., Polyakov I.A., Kuksanov N.K. // Appl. Surf. Sci. 2018. V. 437. P. 181. https://doi.org/10.1016/j.apsusc.2017.12.114
- Wei D.B., Chen X.H., Zhang P.Z., Ding F., Li F.K., Yao Z.J. // Appl. Surf. Sci. 2018. V. 441. P. 448. https://doi.org/10.1016/j.apsusc.2018.02.058
- Zhang J., Wang S., Li W., Yu Yi., Jiang Ji. // Corrosion Sci. 2020. V. 164. P. 108348. https://doi.org/10.1016/j.corsci.2019.108348
- Li H., Yu Y., Fang B., Xiao P., Wang S. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4651. https://doi.org/10.1016/j.jeurceramsoc.2022.04.034
- Peng X., Wang S., Li W., Yu Yi., Li H. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4291. https://doi.org/10.1111/jace.18337
- Bai X., Li Y., Fang X., Zheng Q., Song Y., Chong X., Feng J., Liu Q., Gao Y. // J. Alloys Compd. 2022. V. 818. P. 152829. https://doi.org/10.1016/j.jallcom.2022.165244
- Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
- Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferrous Metals. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
- Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
- Huang L., Wang H.Y., Li Q., Yin S.Q., Jiang Q.C. // J. Alloys Compd. 2008. V. 457. № 286–291. https://doi.org/10.1016/j.jallcom.2007.03.054
- Valenza F., Sobczak N., Sobczak J., Nowak R., Muolo M.L., Passerone A., Sitzia S., Cacciamani G. // J. Europ. Ceram. Soc. 2020. V. 40. № 2. P. 521. https://doi.org/10.1016/j.jeurceramsoc.2019.10.007
- Passerone A., Muolo M.L., Valenza F., Monteverde F., Sobczak N. // Acta Materialia. 2009. V. 57. № 2. P. 356. https://doi.org/10.1016/j.actamat.2008.09.016
- Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
- Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combustion Explosion Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
- Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Mater. Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
- Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813 https://doi.org/10.3390/coatings10090813
- Zhou Y.L., Niinomi M., Akahori T. // Mater. Transactions. 2004. V. 45. № 5. P. 1594. https://doi.org/10.2320/matertrans.45.1549
- Kurbatkina V.V., Patsera E.I., Smirnov D.V., Levashov E.A. // Rus. J. Non-Ferrous Metals. 2020. V. 61. № 6. P. 691. https://doi.org/10.3103/S1067821220060140
- Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
- Cai X., Wang D., Wang Y., Yang Z. // J. Manufact. Process. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057
Arquivos suplementares
