Layered Composite Materials Based on Ti/Ta/Hf/Ceramic to Solve Tasks under Extreme Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Layered composite materials Ti/Ta/Hf/ ceramic were produced via self-propagating high-temperature synthesis (SHS) of pre-structured samples using metal foils (Ti, Hf, Ta, Ni) and reaction tapes (Ti + 0.65C), (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes were prepared by cold rolling from powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were characterized by Scanning Electron Microscopy (SEM) and X-ray analysis. Their flexural strength was determined according to the scheme of three-point loading at temperatures of 25 and 1100°С. The microstructure analysis of produced materials showed that the joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermets and eutectic solutions provides the synthesized multilayer materials with good strength properties (up to 275 MPa at 25°С, up to 72 MPa at 1100°С). These results are of interest for the development of construction materials operating under extreme conditions.

Sobre autores

O. Kamynina

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Autor responsável pela correspondência
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

S. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

I. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

D. Prokhorov

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

Bibliografia

  1. Xu Y., Zhu J., Wu Z., Cao Y., Zhao Y., Zhang W. // Adv. Compos. Hybrid Mater. 2018. V. 1. P. 460. https://doi.org/10.1007/s42114-018-0032-7
  2. Jadoon A.K. // J. Mater. Sci. 2004. V. 39. P. 593. https://doi.org/10.1023/B:JMSC.0000011516.43086.20
  3. Le V.T., Ha N.S., Goo N.S. // Composites. Part B. 2021. V. 226. P. 109301.https://doi.org/10.1016/j.compositesb.2021.109301
  4. Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
  5. Wang A., Gallino I., Riegler S.S., Lin Y.-T., Isaac N.A., Camposano Y.H.S., Matthes S., Flock D., Jacobs H.O., Yen H.-W., Schaaf P. // Mater. Design. 2021. V. 206. P. 109790. https://doi.org/10.1016/j.matdes.2021.109790
  6. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  7. Rogachev A.S., Vadchenko S.G., Nepapushev A.A., Rogachev S.A., Scheck Yu.B., Mukasyan A.S. // Adv. Eng. Mater. 2018. V. 20. P. 1701044. https://doi.org/10.1002/adem.201701044
  8. Buinevich V.S., Nepapushev A.A., Moskovskich D.O., Kuskov K.V., Yudin S.N., Mukasyan A.S. // Ceram. Int. 2021. V. 47. P. 30043. https://doi.org/10.1016/j.ceramint.2021.07.180
  9. Kurbatkina V.V., Patsera E.I., Levashov E.A. // Ceram. Int. 2019. V. 45. P. 4067. https://doi.org/10.1016/j.ceramint.2018.10.113
  10. Chen G., Yin J., Zhao S., Tang H., Qu X. // Int. J. Refr. Met. Hard Mater. 2019. V. 81. P. 71. https://doi.org/10.1016/j.ijrmhm.2019.02.020
  11. Bataev V.A., Golkovski M.G., Samoylenko V.V., Ruktuev A.A., Polyakov I.A., Kuksanov N.K. // Appl. Surf. Sci. 2018. V. 437. P. 181. https://doi.org/10.1016/j.apsusc.2017.12.114
  12. Wei D.B., Chen X.H., Zhang P.Z., Ding F., Li F.K., Yao Z.J. // Appl. Surf. Sci. 2018. V. 441. P. 448. https://doi.org/10.1016/j.apsusc.2018.02.058
  13. Zhang J., Wang S., Li W., Yu Yi., Jiang Ji. // Corrosion Sci. 2020. V. 164. P. 108348. https://doi.org/10.1016/j.corsci.2019.108348
  14. Li H., Yu Y., Fang B., Xiao P., Wang S. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4651. https://doi.org/10.1016/j.jeurceramsoc.2022.04.034
  15. Peng X., Wang S., Li W., Yu Yi., Li H. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4291. https://doi.org/10.1111/jace.18337
  16. Bai X., Li Y., Fang X., Zheng Q., Song Y., Chong X., Feng J., Liu Q., Gao Y. // J. Alloys Compd. 2022. V. 818. P. 152829. https://doi.org/10.1016/j.jallcom.2022.165244
  17. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
  18. Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferrous Metals. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
  19. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
  20. Huang L., Wang H.Y., Li Q., Yin S.Q., Jiang Q.C. // J. Alloys Compd. 2008. V. 457. № 286–291. https://doi.org/10.1016/j.jallcom.2007.03.054
  21. Valenza F., Sobczak N., Sobczak J., Nowak R., Muolo M.L., Passerone A., Sitzia S., Cacciamani G. // J. Europ. Ceram. Soc. 2020. V. 40. № 2. P. 521. https://doi.org/10.1016/j.jeurceramsoc.2019.10.007
  22. Passerone A., Muolo M.L., Valenza F., Monteverde F., Sobczak N. // Acta Materialia. 2009. V. 57. № 2. P. 356. https://doi.org/10.1016/j.actamat.2008.09.016
  23. Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
  24. Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combustion Explosion Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
  25. Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Mater. Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
  26. Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813 https://doi.org/10.3390/coatings10090813
  27. Zhou Y.L., Niinomi M., Akahori T. // Mater. Transactions. 2004. V. 45. № 5. P. 1594. https://doi.org/10.2320/matertrans.45.1549
  28. Kurbatkina V.V., Patsera E.I., Smirnov D.V., Levashov E.A. // Rus. J. Non-Ferrous Metals. 2020. V. 61. № 6. P. 691. https://doi.org/10.3103/S1067821220060140
  29. Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  30. Cai X., Wang D., Wang Y., Yang Z. // J. Manufact. Process. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (231KB)
3.

Baixar (681KB)
4.

Baixar (2MB)
5.

Baixar (954KB)
6.

Baixar (1MB)

Declaração de direitos autorais © О.К. Камынина, С.Г. Вадченко, И.Д. Ковалев, Д.В. Прохоров, 2023