Nanoindentation of nano-SiC/Si hybrid crystals and AlN, AlGaN, GaN, Ga2O3 thin films on nano-SiC/Si
- 作者: Grashchenko A.S.1, Kukushkin S.A.1, Osipov A.V.1
-
隶属关系:
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
- 期: 编号 2 (2024)
- 页面: 40-89
- 栏目: Articles
- URL: https://ter-arkhiv.ru/1026-3519/article/view/673077
- DOI: https://doi.org/10.31857/S1026351924020023
- EDN: https://elibrary.ru/uwrcwy
- ID: 673077
如何引用文章
详细
The review presents systematization and analysis of experimental data on nanoindentation (NI) of a whole class of new materials – wide-gap AlN, GaN, AlGaN and β-Ga2O3 heterostructures formed on a hybrid substrate of a new SiC/Si type, which were synthesized by the method of coordinated atom substitution. The deformational and mechanical properties of the investigated materials are described in detail. The methodology of the NI is described, and both advantages and disadvantages of the NI method were analyzed. The description of the apparatus to conduct the experiments on NI was given. The basic provisions of a new model for describing the deformation properties of a nanoscale rigid two-layer structure on a porous elastic base were proposed. The original method of visualization of residual (after mechanical interaction) deformation in transparent and translucent materials was described. Experimentally determined values of elastic moduli and hardness of SiC nanoscale layers on Si formed by the method of coordinated substitution on three main crystal planes of Si, namely (100), (110) and (111), and elastic moduli and characteristics (elastic modulus, hardness, strength) of surface layers of semiconductor heterostructures AlN/SiC/Si, AlGaN/SiC/Si, AlGaN/AlN/SiC/Si, GaN/SiC/Si and GaN/AlN/SiC/Si grown on SiC/Si hybrid substrates. The unique mechanical properties of a new material β-Ga2O3 formed on SiC layers grown on Si surfaces of orientations (100), (110) and (111) were described.
作者简介
A. Grashchenko
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: asgrashchenko@bk.ru
俄罗斯联邦, St. Petersburg
S. Kukushkin
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Email: sergey.a.kukushkin@gmail.com
俄罗斯联邦, St. Petersburg
A. Osipov
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Email: asgrashchenko@bk.ru
俄罗斯联邦, St. Petersburg
参考
- Osipov A.V., Sharofidinov S.S., Osipova E.V. et al. Growth and Optical Properties of Ga2O3 Layers of Different Crystalline Modifications // Coatings. 2022. V. 12. № 12. P. 1802; https://doi.org/10.3390/coatings12121802
- Tsymbal E.Y., Žutić I. Spintronics Handbook: Spin Transport and Magnetism: Volume One: Metallic Spintronics. CRC press. 2019. P. 600; https://doi.org/10.1201/9780429441189
- Doherty M.W., Manson N.B., Delaney P. et al. The nitrogen-vacancy colour centre in diamond // Phys. Rep. 2013. V. 528. № 1. P. 1–45; https://doi.org/10.1016/j.physrep.2013.02.001
- Von Bardeleben H.J., Zargaleh S.A., Cantin J.L. et al. Transition metal qubits in 4 H-silicon carbide: A correlated EPR and DFT study of the spin S = 1 vanadium V3+ center // Phys. Rev. Mater. 2019. V. 3. № 12. P. 124605; https://doi.org/10.1103/PhysRevMaterials.3.124605
- Kukushkin S.A., Nikolaev V.I., Osipov A.V. et al. Epitaxial gallium oxide on a SiC/Si substrate // Phys. Solid State. 2016. V. 58. P. 1876–1881; https://doi.org/10.1134/S1063783416090201
- Kukushkin S.A., Osipov A.V. New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment // Phys. Solid State. 2008. V. 50. P. 1238–1245; https://doi.org/10.1134/S1063783408070081
- Kukushkin S.A., Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. P. 313001; http://doi.org/10.1088/0022-3727/47/31/313001
- Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review // Phys. Solid State. 2014. V. 56. P. 1507–1535; https://doi.org/10.1134/S1063783414080137
- Goldstein R.V., Morozov N.F. Mechanics of deformation and fracture of nanomaterials and nanotechnology // Phys. Mesomech. 2007. V. 10. № 5–6. P. 235–246; https://doi.org/10.1016/j.physme.2007.11.002
- Ovidko I.A., Semyonov B.N., Sheinerman A.G. Mechanics of deformable nanomaterials. St. Petersburg: St. Petersburg State University Publishing House., 2012. P. 156.
- Bochkarev A.O., Grekov M.A. Influence of surface stresses on the nanoplate stiffness and stability in the Kirsch problem // Phys. Mesomech. 2019. V. 22. P. 209–223; https://doi.org/10.1134/S1029959919030068
- Golovin Y.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review // Phys. Solid State. 2008. V. 50. P. 2205–2236; https://doi.org/10.1134/S1063783408120019
- Fischer-Cripps A.C. Nanoindentation test standards. Springer New York, 2011; https://doi.org/10.1007/978-1-4419-9872-9_10
- Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Nanoindentation of GaN/SiC thin films on silicon substrate // J. Phys. Chem. Solids. 2017. V. 102. P. 151–156; http://doi.org/10.1016/j.jpcs.2016.11.004
- Guzilova L.I., Grashchenko A.S., Butenko P.N. et al. Mechanical Properties of Epilayers of Metastable α-and ε-Ga2O3 Phases Studied by Nanoindentation // Tech. Phys. Lett. 2021. P. 1–5; https://doi.org/10.1134/S106378502107021X
- Vettegren V.I., Bashkarev A.Y., Mamalimov R.I., Shcherbakov I.P. Fractoluminescense of crystalline quartz upon an impact // Phys. Solid State. 2008. V. 50. P. 28–31; https://doi.org/10.1134/S1063783408010071
- Herrmann K., Jennett N.M., Wegener W. et al. Progress in determination of the area function of indenters used for nanoindentation // Thin solid films. 2000. V. 377. P. 394–400; https://doi.org/10.1016/S0040-6090(00)01367-5
- Enders S., Grau P., Hawthorne H.M. Determination of the real indenter shape for nanoindentation/nanotribology tests by surface metrological and analytical investigations // MRS Online Proc. Libr. 2000. V. 649. P. Q3. 6; https://doi.org/10.1557/PROC-649-Q3.6
- Hertz H. On the contact of elastic solids // J. Reine Angew. Math. 1881. V. 92. P. 146–162.
- Hertz H. On hardness //Verh. Ver. Beförderung Gewerbe Fleisses. 1882. V. 61. P. 410.
- Landau L.D., Lifshits E.M. Theory of Elasticity. M.: Nauka, 1965. P. 204.
- Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // J. Mater. Res. 1992. V. 7. № 6. P. 1564–1583; https://doi.org/10.1557/JMR.1992.1564
- Chen X., Zhang S., Wagner G.J. et al. Mechanical resonance of quartz microfibers and boundary condition effects // J. Appl. Phys. 2004. V. 95. № 9. P. 4823–4828; https://doi.org/10.1063/1.1697635
- Moschenok V.I. Nanoindentation and nanohardness of materials // Automobile transport. 2008. № 22.
- Pyatak A.I., Moshenok V.I., Doschechkina I.V., Kukhareva I.E. New principles of hardness evaluation of mass quality control of machine parts // Bulletin of Kharkiv National Automobile and Highway University. 2008. № 43.
- Weihs T.P., Hong S., Bravman J.C., Nix W.D. Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films // J. Mater. Res. 1988. V. 3. № 5. P. 931–942; https://doi.org/10.1557/JMR.1988.0931
- Böklen R. The Science of Hardness Testing and Its Applications // H. Westbrook, H. Conrad, ASM, Metals Park, OH. 1973. 109 p.
- Jönsson B., Hogmark S. Hardness measurements of thin films // Thin solid films. 1984. V. 114. № 3. P. 257–269; https://doi.org/10.1016/0040-6090(84)90123-8
- Bhattacharya A.K., Nix W.D. Finite element simulation of indentation experiments // Int. J. Solids Struct. 1988. V. 24. № 9. P. 881–891; https://doi.org/10.1016/0020-7683(88)90039-X
- Korsunsky A.M., McGurk M.R., Bull S.J., Page T.F. On the hardness of coated systems // Surf. Coat. Technol. 1998. V. 99. № 1–2. P. 171–183; https://doi.org/10.1016/S0257-8972(97)00522-7
- Puchi-Cabrera E.S., Berrı́os J.A., Teer D.G. On the computation of the absolute hardness of thin solid films // Surf. Coat. Technol. 2002. V. 157. № 2–3. P. 185–196; https://doi.org/10.1016/S0257-8972(02)00153-6
- Doerner M.F., Nix W.D. A method for interpreting the data from depth-sensing indentation instruments // J. Mater. Res. 1986. V. 1. № 4. P. 601–609; https://doi.org/10.1557/JMR.1986.0601
- Huajian G., Cheng-Hsin C., Jin L. Elastic contact versus indentation modeling of multi-layered materials // Int. J. Solids Struct. 1992. V. 29. № 20. P. 2471–2492; https://doi.org/10.1016/0020-7683(92)90004-D
- Osipov A.V., Grashchenko A.S., Gorlyak A.N. et al. Investigation of the hardness and young’s modulus in thin near-surface layers of silicon carbide from the Si-and C-faces by nanoindentation // Tech. Phys. Lett. 2020. V. 46. № 8. P. 763–766; https://doi.org/10.1134/S106378502008012X
- Avrov D.D., Lebedev A.O., Tairov Y.M. Polytype inclusions and polytype stability in silicon-carbide crystals // Semiconductors. 2016. V. 50. P. 494–501; https://doi.org/10.1134/S1063782616040059
- Ning X.J., Huvey N., Pirouz P. Dislocation Cores and Hardness Polarity of 4H‐SiC // J. Am. Ceram. Soc. 1997. V. 80. № 7. P. 1645–1652; https://doi.org/10.1111/j.1151-2916.1997.tb03033.x
- Filimonov S.N. Ab initio calculations of absolute surface energies of clean and hydrogen covered 3C-SiC (001), (110) and (111) surfaces // Materials Science Forum. Trans Tech Publications Ltd. 2015. V. 821. P. 363–366; https://doi.org/10.4028/www.scientific.net/MSF.821-823.363
- Rebinder P.A., Shchukin E.D. Surface phenomena in solids during the course of their deformation and failure // Sov. Phys. Usp. 1973. V. 15. № 5. P. 533–554; https://doi.org/ 10.1070/PU1973v015n05ABEH005002
- Osipov A.V. A continuum model for thin-film condensation // J. Phys. D: Appl. Phys. 1995. V. 28. № 8. P. 1670; https://doi.org/10.1088/0022-3727/28/8/016
- Kaneko T., Yamasaki T., Tajima N., Ohno T. First-principles study on reconstruction of 4H-SiC (0001) and (0001 ̅ ) // Surf. Sci. 2016. V. 647. P. 45–50; https://doi.org/10.1016/j.susc.2015.11.019
- Czochralski J. A new method for the measurement of the crystallization rate of metals // Zeitschrift für physikalische Chemie. 1918. V. 92. P. 219–221.
- Huang H., Yan J. Possibility for rapid generation of high-pressure phases in single-crystal silicon by fast nanoindentation // Semicond. Sci. Technol. 2015. V. 30. № 11. P. 115001; https://doi.org/10.1088/0268-1242/30/11/115001
- Wang S., Liu H., Xu L. et al. Investigations of phase transformation in monocrystalline silicon at low temperatures via nanoindentation // Sci. Rep. 2017. V. 7. № 1. P. 8682; https://doi.org/10.1038/s41598-017-09411-x
- Shugurov A.R., Panin A.V., Oskomov K.V. Specific features of the determination of the mechanical characteristics of thin films by the nanoindentation technique // Phys. Solid State. 2008. V. 50. P. 1050–1055; https://doi.org/10.1134/S1063783408060097
- Bhushan B. Nanotribology and Nanomechanics. Vol. 1. Measurement techniques and nanomechanics. 2011; https://doi.org/10.1007/978-3-642-15283-2
- Hay J.L., O’Hern M.E., Oliver W.C. Tie Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Films // MRS Online Proc. Libr. 1998. V. 522. № 1. P. 27–32; https://doi.org/10.1557/PROC-522-27
- Grashchenko A.S., Kukushkin S.A., Osipov A.V. Nanoindentation and deformation properties of nanoscale silicon carbide films on silicon substrate // Tech. Phys. Lett. 2014. V. 40. P. 1114–1116; https://doi.org/10.1134/S1063785014120268
- Quay R. Gallium nitride electronics. Springer Science and Business Media, 2008. V. 96.
- Iost A., Guillemot G., Rudermann Y., Bigerelle M. A comparison of models for predicting the true hardness of thin films // Thin Solid Films. 2012. V. 524. P. 229–237; https://doi.org/10.1016/j.tsf.2012.10.017
- Westbrook J.H., Peyer H.C. The science of hardness testing and its research applications // (No Title). 1973; URL: https://api.semanticscholar.org/CorpusID:60081093
- Chicot D., Lesage J. Absolute hardness of films and coatings // Thin solid films. 1995. V. 254. № 1–2. P. 123–130; https://doi.org/10.1016/0040-6090(94)06239-H
- Losurdo M., Hingerl K. Ellipsometry at the Nanoscale. Berlin: Springer. 2013. P. 730; https://doi.org/10.1007/978-3-642-33956-1
- Grashchenko A.S., Kukushkin S.A., Osipov A.V. Microhardness study of two-layer nanostructures by a nanoindentation method // Mater. Phys. Mech. 2015. V. 24. № 1. P. 35–40; URL: https://mpm.spbstu.ru/userfiles/files/MPM124_05_grashchenko.pdf
- Kukushkin S.A., Osipov A.V. Epitaxial silicon carbide on silicon. method of coordinated substitution of atoms (a review) // Russ. J. Gen. Chem. 2022. V. 92. № 4. P. 584–610; https://doi.org/10.1134/S1070363222040028
- Bessolov V.N., Davydov V.Y., Zhilyaev Y.V. et al. Chloride gas-phase epitaxy of GaN layers grown on Si (111) substrate with AIN buffer sublayer // Tech. Phys. Lett. 2005. V. 31. № 21. P. 30–36; URL: http://j.ioffe.ru/articles/viewPDF/13374
- Bessolov V.N., Zhilyaev Y.V., Konenkova E.V. et al. Aluminum nitride on silicon: Role of silicon carbide interlayer and chloride vapor-phase epitaxy technology // Tech. Phys. Lett. 2010. V. 36. P. 496–499; https://doi.org/10.1134/S1063785010060039
- Grashchenko A.S., Kukushkin S.A., Osipov A.V. Elastic properties of GaN and AlN films formed on SiC/Si hybrid substrate, a porous basis // Mech. Solids. 2020. V. 55. P. 157–161; https://doi.org/10.3103/S0025654420020107
- Kukushkin S.A., Sharofidinov Sh.Sh., Osipov A.V. et al. The mechanism of growth of GaN films by the HVPE method on SiC synthesized by the substitution of atoms on porous Si substrates // ECS J. Solid State Sci. Technol. 2018. V. 7. № 9. P. 480; https://doi.org/10.1149/2.0191809jss
- Zhang W., Li J., Xing Y. et al. Experimental study on the thickness-dependent hardness of SiO2 thin films using nanoindentation // Coatings. 2020. V. 11. № 1. P. 23; https://doi.org/10.3390/coatings11010023
- Shaohua C., Lei L., Tzuchiang W. Nanoindentation of thin-film-substrate system: determination of film hardness and Young’s modulus // Acta Mech. Sin. 2004. V. 20. № 4. P. 383–392; https://doi.org/10.1007/BF02489376
- Zhang Z., Ni Y., Zhang J. et al. Multiscale analysis of size effect of surface pit defect in nanoindentation // Micromachines. 2018. V. 9. № 6. P. 298; https://doi.org/10.3390/mi9060298
- Zhang Z., Ni Y. Multiscale analysis of delay effect of dislocation nucleation with surface pit defect in nanoindentation // Comput. Mater. Sci. 2012. V. 62. P. 203–209; https://doi.org/10.1016/j.commatsci.2012.05.047
- Tripathy S., Chua S.J., Chen P., Miao Z.L. Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si (111) // J. Appl. Phys. 2002. V. 92. № 7. P. 3503–3510; https://doi.org/10.1063/1.1502921
- Grashchenko A.S., Kukushkin S.A., Osipov A.V., Sharofidinov S.S. Nanoindentation of AlGaN Films Formed on SiC/Si Substrates Grown by the Method of Coordinated Substitution of Atoms // Mech. Solids. 2023. V. 58. № 4. P. 1089–1097; https://doi.org/10.3103/S0025654423700164
- Grashchenko A.S., Kukushkin S.A., Osipov A.V., Sharofidinov S.S. Self-Organization of the Composition of AlxGa1–xN Films Grown on Hybrid SiC/Si Substrates // Phys. Solid State. 2021. V. 63. P. 442–448; https://doi.org/10.1134/S1063783421030100
- Rawdanowicz T.A., Sankar J., Narayan J., Godbole V. Hardness and Elastic Modulus Measurements of AIN and TiN Sub-Micron Thin Films Using the Continuous Stiffness Measurement Technique with Fem Analysis // MRS Online Proc. Libr. 1999. V. 594; https://doi.org/10.1557/PROC-594-507
- Nowak R., Pessa M., Suganuma M. et al. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal // Appl. Phys. Lett. 1999. V. 75. № 14. P. 2070–2072; https://doi.org/10.1063/1.124919
- Wu Y.Q., Gao S., Huang H. The deformation pattern of single crystal β-Ga2O3 under nanoindentation // Mater. Sci. Semicond. Process. 2017. V. 71. P. 321–325; https://doi.org/10.1016/j.mssp.2017.08.019
- Guzilova L.I., Grashchenko A.S., Pechnikov A.I. et al. Investigation of epitaxial layers and single crystals of β-Ga2O3 by nanoindentation method // Mater. Phys. Mech. 2016. V. 29. № 2. P. 166; URL: https://www.ipme.ru/e-journals/MPM/no_22916/MPM229_09_guzilova.pdf
- Osipov A.V., Grashchenko A.S., Kukushkin S.A. et al. Structural and elastoplastic properties of β-Ga2O3 films grown on hybrid SiC/Si substrates // Continuum Mech. Thermodyn. 2018. V. 30. P. 1059–1068; https://doi.org/10.1007/s00161-018-0662-6
- Grashchenko A.S., Kukushkin S.A., Osipov A.V. Study of elastic properties of SiC films synthesized on Si substrates by the method of atomic substitution // Phys. Solid State. 2019. V. 61. P. 2310–2312; https://doi.org/10.1134/S106378341912014X
- Nye J.F. Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985; https://doi.org/10.1088/0031-9112/36/12/027
- Lee J.G. Computational materials science: an introduction. CRC press, 2016; https://doi.org/10.1201/9781315368429
- Espresso Q. a modular and open-source software project for quantum simulations of materials / P. Giannozzi [et al.] //J. Phys.: Condens. Matter. 2009. V. 21. № 39. P. 395502; https://doi.org/10.1088/0953-8984/21/39/395502
- Perdew J.P., Ruzsinszky A., Csonka G.I. et al. Restoring the density-gradient expansion for exchange in solids and surfaces // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406; https://doi.org/10.1103/PhysRevLett.100.136406
- Oshima Y., Ahmadi E., Badescu S.C. et al. Composition determination of β-(AlxGa1−x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction // Appl. Phys. Express. 2016. V. 9. № 6. P. 061102; https://doi.org/10.7567/apex.9.061102
- Gaillac R., Pullumbi P., Coudert F.X. ELATE: an open-source online application for analysis and visualization of elastic tensors // J. Phys.: Condens. Matter. 2016. V. 28. № 27. P. 275201; https://doi.org/10.1088/0953-8984/28/27/275201
- Galanov B.A., Domnich V., Gogotsi Y. Elastic-plastic contact mechanics of indentations accounting for phase transformations // Exp. Mech. 2003. V. 43. P. 303–308; https://doi.org/10.1007/BF02410528
补充文件
