Investigation of resistance to plastic deformation and oxidation of single-crystals of CO-AL-W-Ta alloy directionally solidified with a flat front

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Single crystals of cobalt-base alloy Co8.4Al9.4W1.9T, at. % with axial macro-segregation of tungsten and aluminum (gradient castings) were directionally solidified with a flat solidification front. Mini-specimens of different chemical compositions were cut from the obtained single-crystals at different casting heights for compression and oxidation tests. The tests performed at 900 °C showed that tungsten increases the yield strength of the alloy, while aluminum improves its oxidation resistance. It is shown that the method of directional solidification with a flat front can be effectively applied to optimize the physical and mechanical characteristics of multicomponent alloys of metals.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Хат алмасуға жауапты Автор.
Email: a.epishin2021@gmail.com
Ресей, Chernogolovka, Moscow Region, 142432

N. Petrushin

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Ресей, Moscow, 105005

I. Svetlov

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Ресей, Moscow, 105005

Е. Elyutin

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Ресей, Moscow, 105005

D. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Ресей, Moscow, 119526

Әдебиет тізімі

  1. Sato J., Omori T., Oikawa K. et al. Cobalt-base high-temperature alloys // Science. 2006. V. 312. № 5770. P. 90–91. https://doi.org/10.1126/science.1121738
  2. Pollock T.M., Dibbern J., Tsunekane M. et al. New Co-based γ-γ ′ high-temperature alloys // JOM. 2010. V. 62. № 1. P. 58–63. https://doi.org/10.1007/s11837-010-0013-y
  3. Bauer A., Neumeier S., Pyczak F. et al. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants // Scripta Mater. 2010. V. 63. № 12. P. 1197–1200. https://doi.org/10.1016/j.scriptamat.2010.08.036
  4. Meher S., Yan H.-Y., Nag S. et al. Solute partitioning and site preference in γ/γ′ cobalt-base alloys // Scripta Mater. 2012. V. 67. № 10. P. 850–853. https://doi.org/10.1016/j.scriptamat.2012.08.006
  5. Koßmann J., Zenk C.H., Lopez-Galilea I. et al. Microsegregation and precipitates of an as-cast Co-based superalloy—microstructural characterization and phase stability modelling // J Mater Sci. 2015. V. 50. P. 6329–6338. https://doi.org/10.1007/s10853-015-9177-8
  6. Petrushin N., Hvatzkiy K., Gerasimov V. et al. A single-crystal Co-base superalloy strengthened by γ′ precipitates: structure and mechanical properties // Adv. Eng. Mater. 2015. V. 17. № 6. P. 755–760. https://doi.org/10.1002/adem.201500088
  7. Epishin A.I., Petrushin N.V., Link T. et.al. Investigation of the thermal stability of the structure of a cobalt heat-resistant alloy reinforced with intermetallic γ′-phase secretions // Deformation and Destruction of Materials. 2015. № 3. P. 17–22. (In Russian)
  8. Saal J.E., Wolverton C. Energetics of antiphase boundaries in γ′ Co3(Al,W)-based superalloys // Acta Mater. 2016. V. 103. P. 57–62. https://doi.org/10.1016/j.actamat.2015.10.007
  9. Midtlyng J., Epishin A.I., Petrushin N.V. et al. Creep behavior of a γ′-strengthened Co-base alloy with zero γ/γ′-lattice misfit at 800 °C, 196 MPa // J. Mater. Res. 2017. V. 32. № 24. P. 4466−4474. https://doi.org/10.1557/jmr.2017.424
  10. Epishin A., Petrushin N., Nolze G. et al. Investigation of the γ′-strengthened quaternary Co-based alloys Co–Al–W–Ta // Metall. Mater. Trans. A. 2018. V. 49. P. 4042–4057. https://doi.org/10.1007/s11661-018-4756-3
  11. Tomaszewska A., Oleksiak B. Microstructural characteristics of new type γ-γ ′ Co–9Al–9W cobalt-based superalloys in as-cast state // Metalurgija. 2018. V. 57. № 1–2. P. 91–94. https://hrcak.srce.hr/file/278975
  12. Epishin A., Chyrkin A., Nolze G. et. al. Interdiffusion in the face-centered cubic phase of the Co–Al–W–Ta system between 1090 and 1240 °C // JPED. 2018. V. 39. P. 176–185. https://doi.org/10.1007/s11669-018-0620-9
  13. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Directional crystallization and physico-chemical analysis. M.: Chemistry, 1976. 200 p. (In Russian)
  14. Sidorov V.V., Kablov D.E., Rigin V.E. Metallurgy of foundry heat-resistant alloys: technology and equipment. M.: VIAM, 2016. 368 p. (In Russian)
  15. Mishima Y., Ochiai S., Hamao N. et. al. Solid solution hardening of Nickel – role of transition metal and B-subgroup solutes // Trans. Jpn. Inst. Met. 1986. V. 27. № 9. 656–664. https://doi.org/10.2320/matertrans1960.27.656
  16. Aviation materials: Handbook in 13 volumes. Vol. 3. Foundry heat-resistant and intermetallic nickel-based alloys. 7th ed. M.: SIC “Kurchatov Institute”–VIAM, 2022. 192 p. (In Russian)
  17. Nikitin V.I. Corrosion and protection of gas turbine blades. M.: Mashinostroenie, 1987. 272 p. (In Russian)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Gradient casting of cobalt alloy: (a) Distribution of alloying elements in zone II, MPSA; (b) Scheme of electroerosion cutting of cylindrical mini-samples of different chemical composition for compression testing.

Жүктеу (176KB)
3. Fig. 2. Microstructure of cobalt alloy casting, SEM. (a) After two-stage heat treatment of 1300 °C/ 24 h and 700 °C/48 h; (b, c) After exposure at 900 °C for 500 h in the central (b) and near-surface (c) regions.

Жүктеу (272KB)
4. Fig. 3. Compression and heat resistance test results for Cool-WTa alloy samples at 900 °C: (a) Effect of tungsten content on yield strength. The insert shows the heating and deformation of a mini alloy sample in a Gleeble 3800 vacuum testing machine. (b) The effect of aluminum content on heat resistance. Change in the specific gravity of the samples ∆m⁄S depending on the exposure time t.

Жүктеу (144KB)

© Russian Academy of Sciences, 2025