On the criterion of strength of single-lap plate joints

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

On the basis of experimental data on the fracture of an adhesive layer mating two plates along a given section and the known analytical solution corresponding to the calculation scheme, variants of the fracture criterion that take into account hydrostatic pressure and invariant components of elastic energy are considered. One- and two-parameter criteria are investigated, in which the products of volume and shape deformation energy per layer thickness form the critical flow of elastic energy density. It is shown that the loosening of a thin adhesive layer under a two-parameter criterion quasilinear with respect to the volume strain energy most accurately describes the critical state.

Sobre autores

V. Glagolev

Tula State University

Autor responsável pela correspondência
Email: vadim@tsu.tula.ru
Rússia, Tula

A. Lutkhov

Tula State University

Email: tip460@mail.ru
Rússia, Tula

Bibliografia

  1. Steven R.A., Stefan H. Strength prediction of beams with bi-material butt-joints // Eng. Fract. Mech. 2003. V. 70. № 12. P. 1491–1507. https://doi.org/10.1016/s0013-7944(02)00149-2
  2. Labossiere P.E.W., Dunn M.L. Fracture initiation at three-dimensional bimaterial interface corners // J. Mech. Phys. Solids. 2001. V. 49. № 3. P. 609–634. https://doi.org/10.1016/s0022-5096(00)00043-0
  3. Wu Z., Tian S., Hua Y., Gu X. On the interfacial strength of bonded scarf joints // Eng. Fract. Mech. 2014. V. 131. P. 142–149. https://doi.org/10.1016/j.engfracmech.2014.07.026
  4. Ustinov K.B. On delamination of a stripe along the boundary between two elastic layers. Part 2. Case of shear crack // PNRPU Mechanics Bulletin. 2016. № 2. P. 131–142. https://doi.org/10.15593/perm.mech/2016.2.09
  5. Ustinov K.B., Massabo R., Lisovenko D.S. Orthotropic strip with central semi-infinite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Engineering Failure Analysis. 2020. V. 110. 104410. https://doi.org/10.1016/j.engfailanal.2020.104410
  6. Astafiev V.I., Radayev Y.N., Stepanova L.V. Non-linear fracture mechanics. Samara: Samara State University publishing house, 2001. 632 p.
  7. Nakano N., Sekiguchi Y., Sawa T. FEM stress analysis and strength prediction of scarf adhesive joints under static bending moments // Int. J. Adhes. Adhes. 2013. V. 44. P. 166–173. https://doi.org/10.1016/j.ijadhadh.2013.02.010
  8. Campilho R.D.S.G., Banea M.D., Neto J.A.B.P., da Silva L.F.M. Modelling of single-lap joints using cohesive zone models: Effect of the cohesive parameters on the output of the simulations // The Journal of Adhesion. 2012. V. 88(4-6). P. 513–533. https://doi.org/10.1080/00218464.2012.660834
  9. De Moura M.F.S.F., Goncalves J.P.M. Cohesive zone model for high-cycle fatigue of adhesively bonded joints under mode I loading // Int. J. Solids Struct. 2014. V. 5. P. 1123–1131. https://doi.org/10.1016/j.ijsolstr.2013.12.0
  10. Panettieri E., Fanteria D., Danzi F. Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results // Composite Structures. 2016. V. 137. P. 140–147. https://doi.org/10.1016/j.compstruct.2015.11.018
  11. Volkersen O. Die Nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten // Luftfarhtforschung. 1938. V. 15. P. 41–47.
  12. Goland M., Reissner E. The stresses in cemented joints // J. Appl. Mech. 1944. V. 11 (1). P. 17–27. https://doi.org/10.1115/1.4009336
  13. Adams R.D., Peppiatt N.A. Stress analysis of adhesive-bonded lap joints // Journal of Strain Analysis. 1974. V. 9. № 3. P. 185–196. https://doi.org/10.1243/03093247V093185
  14. da Silva L.F.M., das Neves P.J.C., Adams R.D., Wang A., Spelt J.K. Analytical models of adhesively bonded joints – Part II: Comparative study // Int. J. Adhes. Adhes. 2009. V. 29 (3). P. 331–341. https://doi.org/10.1016/j.ijadhadh.2008.06.007
  15. Carpenter W.C. Goland and Reissner were correct // The Journal of Strain Analysis for Engineering Design. 1989. V. 24. № 3. P. 185–187. https://doi.org/10.1243/03093247V243185
  16. Glagolev V.V., Markin A.A. Limit states of adhesive layers under combined loading // Mechanics of Solid. 2023. № 6. P. 39–46. https://doi.org/10.31857/S0572329923600019
  17. Novozhilov V.V. On plastic cavitation // J. Appl. Math. Mech. 1965. V. 29(4). P. 811–819. https://doi.org/10.1016/0021-8928(65)90090-0
  18. Prandtl L. Spannungsverteilung in plastischen korpern // Proc. 1st Internat. Congr. Appl. Mech. 1924. P. 43–54.
  19. Guest J.J. Yield surface in combined stress // Phil. Mag. Ser. 7. 1940. V. 30. P. 349–369.
  20. Schleicher F. Der spannungszustand an der fliessgrenze (Plastizitatsbedingung) // ZAMM. 1926. V. 6 (3). P. 199–216.
  21. Tolokonnikov L.A., Tolokonnikov O.L., Sultanov I.S. Axisymmetric plastic deformations under the condition of plasticity depending on hydrostatic stress // International applied mechanics. 1976. V. XII. № 8. P. 43–48.
  22. Tolokonnikov O.L. Installation for testing tubular samples of materials in a high-pressure enviroment // Izv. Akad. Nauk SSSR. Mekh. Тverd. Тela. 1985. № 3. P. 185–188.
  23. Berto F., Glagolev V.V., Markin A.A. Relationship between Jc and the dissipation energy in the adhesive layer of a layered composite // Int. J. Fract. 2020. V. 224. № 2. P. 277–284. https://doi.org/10.1007/s10704-020-00464-0
  24. Santos M.A.S., Campilho R.D.S.G. Mixed-mode fracture analysis of composite bonded joints considering adhesives of different ductility // Int. J. Fract. 2017. V. 207. P. 55–71. https://doi.org/10.1007/s10704-017-0219-x
  25. Dionisio J.M.M., Ramalho L.D.C., Sanchez-Arce I.J., Campilho R.D.S.G., Belinha J. Fracture mechanics approach to stress singularity in adhesive joints // Int. J. Fract. 2021. V. 232. P. 77–91. https://doi.org/10.1007/s10704-021-00594-z
  26. De Sousa C.C.R.G., Campilho R.D.S.G., Marques E.A.S., Costa M., da Silva L.F.M. Overview of different strength prediction techniques for single-lap bonded joints // Proc. Inst. Mech. Eng. Part L. 2017. V. 231. P. 210–223. https://doi.org/10.1177/1464420716675746
  27. Bogacheva V.E., Glagolev V.V., Glagolev L.V., Markin A.A. On the influence of the mechanical characteristics of a thin adhesion layer on the composite strength. Part 1. Elastic deformation // PNRPU Mechanics Bulletin. 2022. № 3. P. 116–124. https://doi.org/10.15593/perm.mech/2022.3.12
  28. Bruno D., Greco F., Lonetti P. Computation of energy release rate and mode separation in delaminated composite plates by using plate and interface variables // Mech. Adv. Mater. Struct. 2005. V. 12. № 4. P. 285–304. https://doi.org/10.1080/15376490590953563
  29. Bruno D., Greco F. Mixed-mode delamination in plates: a refined approach // Int. J. Solids Struct. 2001. V. 38. № 50–51. P. 9149–9177. https://doi.org/10.1016/S0020-7683(01)00179-2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024