On the reconstruction of a two-dimensional density of a functionally graded elastic plate
- Autores: Dudarev V.V.1, Mnukhin R.M.1
-
Afiliações:
- Institute of Mathematics, Mechanics and Computer Sciences named after I.I. Vorovich, Southern Federal University
- Edição: Nº 3 (2024)
- Páginas: 12–33
- Seção: Articles
- URL: https://ter-arkhiv.ru/1026-3519/article/view/673048
- DOI: https://doi.org/10.31857/S1026351924030022
- EDN: https://elibrary.ru/uikmuu
- ID: 673048
Citar
Resumo
In this article, the in-plane vibrations of a rectangular plate within the framework of a plane stress is formulated based on the general formulation of steady-state vibrations of an inhomogeneous elastic isotropic body. The left side of the plate is rigidly fixed, vibrations are forced by tensile load applied at the right side. The properties of the functionally graded material are described by two-dimensional variation laws (Young’s modulus, Poisson’s ratio and density). A dimensionless problem formulation is given. The direct problem solution of the displacement field determination is obtained using the finite element method. The effect of material characteristics on the displacement field and the value of the first resonance are shown. An analysis of the obtained results is carried out. The inverse problem of density determination from displacement field data for a fixed frequency is considered. To reduce the error in calculating two-variable table functions derivatives, an approach based on spline approximation and a locally weighted regression algorithm is proposed. Reconstruction examples of different laws are presented to demonstrate the possibility of using this approach.
Palavras-chave
Sobre autores
V. Dudarev
Institute of Mathematics, Mechanics and Computer Sciences named after I.I. Vorovich, Southern Federal University
Autor responsável pela correspondência
Email: dudarev_vv@mail.ru
Rússia, Rostov-on-Don
R. Mnukhin
Institute of Mathematics, Mechanics and Computer Sciences named after I.I. Vorovich, Southern Federal University
Email: romamnuhin@yandex.ru
Rússia, Rostov-on-Don
Bibliografia
- Kieback B., Neubrand A., Riedel H. Processing techniques for functionally graded materials // Mater. Sci. Eng., A. 2003. V. 362. № 1–2. https://doi.org/10.1016/S0921-5093(03)00578-1
- Naebe M., Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties // Applied materials today. 2016. V. 5. P. 223–245. https://doi.org/10.1016/j.apmt.2016.10.001
- Functionally graded composite building materials and structures. / Selyaev V.P., Kartashov B.A., Klementyev V.D., Lazarev A.L. Saransk: Mordovskij gosudarstvennyj universitet im. N. P. Ogareva. 2005. 160 p. [in Russian]
- Suresh S., Mortensen A. Fundamentals of Functionally Graded Materials. London: IOM Communications Ltd. 1998. 165 p.
- Birman V., Byrd L. Modeling and analysis of functionally graded materials and structures // Appl. Mech. Rev. 2007. V. 60. № 5. P. 195–216. https://doi.org/10.1115/1.2777164
- Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges / Saleh B. [et al.] // Composites, Part B. 2020. V. 201. Article number 108376. https://doi.org/10.1016/j.compositesb.2020.108376
- State of the art in functionally graded materials / Boggarapu V. [et al.] // Compos. Struct. 2021. V. 262. Article number 113596. https://doi.org/10.1016/j.compstruct.2021.113596
- Asemi K., Ashrafi H., Shariyat M. Three-dimensional stress and free vibration analyses of functionally graded plates with circular holes by the use of the graded finite element method // J. Appl. Mech. Tech. Phys. 2016. V. 57. № 4. P. 690–700. https://doi.org/10.1134/S0021894416040131
- Tovstik P.E., Tovstik T.P. Two-Dimensional Model of a Plate Made of an Anisotropic Inhomogeneous Material // Mechanics of Solids. 2017. V. 52. № 2. P. 144–154. https://doi.org/10.3103/S0025654417020042
- Papkov S.O. New analytical solutions for vibration problem of thick plates // PNRPU Mechanics Bulletin. 2019. № 4. P. 145–156. https://doi.org/10.15593/perm.mech/2019.4.14 [in Russian]
- Kumar S., Jana P. Accurate solution for free vibration behaviour of stepped FGM plates implementing the dynamic stiffness method // Structures. 2022. V. 45. P. 1971–1989. https://doi.org/10.1016/j.istruc.2022.10.035
- Ravindran A., Bhaskar K. Three-dimensional analysis of composite FGM rectangular plates with in-plane heterogeneity // Int. J. Mech. Sci. 2019. V. 160. P. 386–396. https://doi.org/10.1016/j.ijmecsci.2019.07.004
- Shen H.S. Functionally graded materials: nonlinear analysis of plates and shells. Boca Raton: CRC press. 2016. 280 p. https://doi.org/10.1201/9781420092578
- Xing Y., Li G., Yuan Y. A review of the analytical solution methods for the eigenvalue problems of rectangular plates // International Journal of Mechanical Sciences. 2022. V. 221. P. 107171. https://doi.org/10.1016/j.ijmecsci.2022.107171
- Xing Y.F., Liu B. Exact solutions for the free in-plane vibrations of rectangular plates // International Journal of Mechanical Sciences. 2009. V. 51. № 3. P. 246–255. https://doi.org/10.1016/j.ijmecsci.2008.12.009
- An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges / Du J. [et al.] // Journal of Sound and Vibration. 2007. V. 306. № 3. P. 908–927. https://doi.org/10.1016/j.jsv.2007.06.011
- Gorman D.J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported // Journal of Sound and Vibration. 2006. V. 294. № 1. P. 131–161. https://doi.org/10.1016/j.jsv.2005.10.023
- Gorman D.J. Free in-plane vibration analysis of rectangular plates by the method of superposition // Journal of Sound and Vibration. 2004. V. 272. № 3. P. 831–851. https://doi.org/10.1016/S0022-460X(03)00421-8
- Bardell N.S., Langley R.S., Dunsdon J.M. On the free in-plane vibration of isotropic rectangular plates // Journal of Sound and Vibration. 1996. V. 191. № 3. P. 459–467. https://doi.org/10.1006/jsvi.1996.0134
- Zhao T. et al. Free in-plane vibration of irregular laminated plate with curved edges based on boundary-type Chebyshev–Ritz method // Thin-Walled Structures. 2023. V. 190. P. 110977. https://doi.org/10.1016/j.tws.2023.110977
- Lyu P., Du J., Liu Z., Zhang P. Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material // Composite Structures. 2017. V. 178. P. 246–259. https://doi.org/10.1016/j.compstruct.2017.06.065
- Irie T., Yamada G., Muramoto Y. Natural frequencies of in-plane vibration of annular plates // Journal of Sound and Vibration. 1984. V. 97. № 1. P. 171–175. https://doi.org/10.1016/0022- 460X(84)90479-6
- Wang Q., Shi D., Liang Q., e Ahad F. A unified solution for free in-plane vibration of orthotropic circular, annular and sector plates with general boundary conditions // Applied Mathematical Modelling. 2016. V. 40. № 21. P. 9228–9253. https://doi.org/10.1016/j.apm.2016.06.005
- Chen Z., Qin B., Zhong R., Wang Q. Free in-plane vibration analysis of elastically restrained functionally graded porous plates with porosity distributions in the thickness and in-plane directions // The European Physical Journal Plus. 2022. V. 137. № 1. P. 158. https://doi.org/10.1140/epjp/s13360-021-02153-w
- Arreola-Lucas A., Franco-Villafane J.A., Baez G., Mendez-Sanchez R.A. In-plane vibrations of a rectangular plate: Plane wave expansion modelling and experiment // Journal of Sound and Vibration. 2015. V. 342. P. 168–176. https://doi.org/10.1016/j.jsv.2014.12.043
- Schaadt K., Simon G., Ellegaard C. Ultrasound resonances in a rectangular plate described by random matrices // Physica Scripta. 2001. — jan. V. 2001. № T90. P. 231. https://doi.org/10.1238/Physica.Topical.090a00231
- Larsson D. In-plane modal testing of a free isotropic rectangular plate // Experimental Mechanics. 1997. V. 37. № 3. P. 339–343. https://doi.org/10.1007/BF02317428
- Nedin R., Vatulyan A. Inverse problem of non-homogeneous residual stress identification in thin plates // Int. J. Solids Struct. 2013. V. 50. № 13. P. 2107–2114. https://doi.org/10.1016/j.ijsolstr.2013.03.008
- Huang C., Wang L., Wang K. Residual stress identification in thin plates based on modal data and sensitivity analysis // Int. J. Solids Struct. 2022. V. 236–237. Article number 111350. https://doi.org/10.1016/j.ijsolstr.2021.111350.
- Bogachev I.V., Vatul’yan A.O., Yavruan O.V. Reconstruction of the stiffness of an inhomogeneous elastic plate // Acoustical Physics. 2016. V. 62. № 3. С. 377–382. https://doi.org/10.1134/S1063771016030052.
- Ablitzer F., Pezerat C., Lascoup B., Brocail J. Identification of the flexural stiffness parameters of an orthotropic plate from the local dynamic equilibrium without a priori knowledge of the principal directions // J. Sound Vib. 2017. V. 404. P. 31–46. https://doi.org/10.1016/j.jsv.2017.05.037.
- Bogachev I.V. Simultaneous identification of mechanical properties of functionally graded plates under the Kirchhoff and Tymoshenko models // PNRPU Mechanics Bulletin. 2021. № 4. P. 19–28. https://doi.org/10.15593/perm.mech/2021.4.03 [in Russian]
- Lopes H., dos Santos J., Katunin A. Identification of material properties of a laminated plate from measurements of natural frequencies and modal rotations // Procedia Struct. Integr. 2019. V. 17. P. 971–978. https://doi.org/10.1016/j.prostr.2019.08.129.
- Rodrigues A., dos Santos J., Lopes H. Identification of material properties of green laminate composite plates using bio-inspired optimization algorithms // Procedia Struct. Integr. 2022. V. 37. P. 684–691. https://doi.org/10.1016/j.prostr.2022.01.138.
- Vatulyan A.O. Coefficient inverse problems of mechanics. Moscow: Fizmatlit. 2019. 272 p. [in Russian].
- Vasilyev M.P., Yagola A.G. The solution of two-dimensional Fredholm integral equations of the first kind with multiprocessor systems // Numerical Methods and Programming. 2003. V. 4. № 1. P. 323–326 [in Russian].
- Luk’yanenko D.V., Yagola A.G. Application of multiprocessor systems for solving inverse problems leading to Fredholm integral equations of the first kind // Trudy Instituta Matematiki i Mekhaniki UrO RAN. 2012. V. 18. № 1. P. 222–234 [in Russian].
- Nedin R.D., Vatulyan A.O. Advances in Modeling and Identification of Prestresses in Modern Materials // Advanced Materials Modelling for Mechanical, Medical and Biological Applications. 2022. P. 357–374.
- Lomakin V.A. Theory of elasticity of inhomogeneous bodies. Мoscow: Lenand. 2014. 367 p. [in Russian].
- Kalinchuk V.V., Belyankova T.I. Surface dynamics of inhomogeneous media. Мoscow: Fizmatlit. 2009. 312 p. [in Russian].
- Dudarev V.V., Mnukhin R.M., Nedin R.D., Vatulyan A.O. Effect of material inhomogeneity on characteristics of a functionally graded hollow cylinder // Appl. Math. Comput. 2020. V. 382. Article number 125333. https://doi.org/10.1016/j.amc.2020.125333
- Vatulyan A.O., Dudarev V.V., Mnukhin R.M. Identification of characteristics of a functionally graded isotropic cylinder // Int. J. Mech. Mater. Des. 2021. V. 17. P. 321–332. https://doi.org/10.1007/s10999-020-09527-5.
- Asgari M., Akhlaghi M. Natural frequency analysis of 2D FGM thick hollow cylinder based on three-dimensional elasticity equation // Eur. J. Mech. A/Solids. 2011. V. 30. P. 72–81. doi: 10.1016/j.euromechsol.2010.10.002.
- Vatulyan A.O., Dudarev V.V., Mnukhin R.M., Nedin R.D. Identification of the Lame parameters of an inhomogeneous pipe based on the displacement field data // Eur. J. Mech. A/Solids. 2020. V. 81. Article number 103939. https://doi.org/10.1016/j.euromechsol.2019.103939
- Lindstrom S.B. et al. Integrated digital image correlation for mechanical characterization of carbon fiber-reinforced polymer plates // Composite Structures. 2023. V. 305. P. 116501. https://doi.org/10.1016/j.compstruct.2022.116501
- Rokos O., Peerlings R.H.J., Hoefnagels J.P.M., Geers M.G.D. Integrated digital image correlation for micro-mechanical parameter identification in multiscale experiments // Inter national Journal of Solids and Structures. 2023. V. 267. P. 112130. https://doi.org/10.1016/j.ijsolstr.2023.112130
- Koohbor B. et al. Through Thickness Elastic Profile Determination of Functionally Graded Materials // Experimental Mechanics. 2015. V. 55. № 8. P. 1427–1440. https://doi.org/10.1007/s11340-015-0043-z
- Tutuncu N. Stresses in thick-walled FGM cylinders with exponentially-varying properties // Eng. Struct. 2007. V. 29. P. 2032–2035. doi: 10.1016/j.engstruct.2006.12.003.
- Nejad M.Z., Jabbari M., Ghannad M. Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading // Int. J. Eng. Sci. 2015. V. 89. P. 86–99. https://doi.org/10.1016/j.ijengsci.2014.12.004
- Romano A.J., Shirron J.J., Bucaro J.A. On the noninvasive determination of material parameters from a knowledge of elastic displacements theory and numerical simulation // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998. V. 45. № 3. P. 751–759. https://doi.org/10.1109/58.677725
- Cleveland W.S. Robust locally weighted regression and smoothing Scatterplots // J. Am. Stat. Assoc. 1979. V. 74. № 368. P. 829–836. https://doi.org/10.1080/01621459.1979.10481038
- Marzavan S., Nastasescu V. Displacement calculus of the functionally graded plates by finite element method // Alex. Eng. J. 2022. V. 61. № 12. P. 12075–12090. https://doi.org/10.1016/j.aej.2022.06.004
Arquivos suplementares
