The content of nitrogen, phosphorus in cereals and dicot grasses leaves and features of their rhizosphere microflora in multi-age fly ash dumps

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The nitrogen (N) and phosphorus (P) content was studied in the leaves of 6 cereals and 18 non-legume dicotyledonous grass species, as well as directly in the substrates of non-recultivated areas of two different age fly ash dumps. The total number of microorganisms and nitrogen fixers capable of phosphate solubilization and indole-3-acetic acid (IAA) synthesis was analyzed in the rhizosphere of two pioneer (Alopecurus aequalis, Ranunculus sceleratus) and two late successional (Poa pratensis, R. auricomus) plant species. Higher N and P content and lower N/P ratio were found in the leaves of dicot grasses compared to cereals. The number of nitrogen fixers in the rhizosphere of dicots was higher, which coincided with the higher content of total nitrogen in it. The proportion of nitrogen fixers with an increased ability to phosphate solubilize and IAA produce was significantly higher in the early stages of ash dump overgrowth.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Betekhtina

Ural Federal University named after the first President of Russia B. N. Yeltsin

Хат алмасуға жауапты Автор.
Email: a.a.betekhtina@urfu.ru
Ресей, Mira St., 19, Yekaterinburg, 620002

O. Nekrasova

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: a.a.betekhtina@urfu.ru
Ресей, Mira St., 19, Yekaterinburg, 620002

A. Malakheeva

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: a.a.betekhtina@urfu.ru
Ресей, Mira St., 19, Yekaterinburg, 620002

O. Voropaeva

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: a.a.betekhtina@urfu.ru
Ресей, Mira St., 19, Yekaterinburg, 620002

M. Maleva

Ural Federal University named after the first President of Russia B. N. Yeltsin

Email: a.a.betekhtina@urfu.ru
Ресей, Mira St., 19, Yekaterinburg, 620002

Әдебиет тізімі

  1. Аринушкина Е. В. Руководство по химическому анализу почв. М.: МГУ, 1970. 478 ц.
  2. Гаджиев И. М., Курачев В. М. Генетические и экологические аспекты исследования и классификация почв техногенных ландшафтов // Экология и рекультивация техногенных ландшафтов. 1992. С. 6–15.
  3. ГОСТ 26889-86 Продукты пищевые и вкусовые. Общие указания по определению содержания азота методом Кьельдаля. М.: Стандартинформ, 2010. 22 ц.
  4. Мацкова Ю. А., Олюнина Л. Н., Сухов В. С., Неруш В. Н., Синицына Ю. В., Веселов А. П. Влияние продуцирующих индол-3-уксусную кислоту бактерий Azotobacter chroococcum 66 и Pseudomonas putida NBr9 на термоустойчивость проростков пшеницы (Triticum aestivum L.) // Фундаментальные исследования. 2015. № 7 (4). С. 682–686.
  5. Нетрусов А. И., Егорова М. А., Захарчук Л. М. и др. Практикум по микробиологии: Учебное пособие для студентов высших учебных заведений. М.: Издательский центр “Академия”, 2005. 608 ц.
  6. Пасынкова М. В. Зола углей как субстрат для выращивания растений // Растения и промышленная среда. 1974. С. 29–44.
  7. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation // Microbiol. Rev. 1995. V. 59. № 1. P. 143–169. https://doi.org/10.1128/MMBR.59.1.143-169.1995
  8. Aquilanti L., Mannazzu I., Papa R., Cavalca L., Clementi F. Amplified ribosomal DNA restriction analysis for the characterization of Azotobacteraceae: a contribution to the study of these free-living nitrogen-fixing bacteria // J. Microbiol. Methods. 2004. V. 57. № 2. P. 197–206. https://doi.org/10.1016/j.mimet.2004.01.006
  9. Beneduzi A., Peres D., da Costa P. B., Zanettini M. H.B., Passaglia L. M.P. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil // Res. Microbiol. 2008. V. 159. № 4. P. 244–250. https://doi.org/10.1016/j.resmic.2008.03.003
  10. Betekhtina A. A., Nekrasova O. A., Uchaev A. P., Nekrashevich P. S., Malaheeva A. V., Radchenko T. A., Dubrovina D. I., Petrova T. A., Veselkin D. V. Over 50 Years of Overgrowth of the Ash Dump, The Content of Nitrogen and Phosphorus Changed in Young Soils but it Did Not Change in Plants // Russ. J. Ecol. 2023. V. 54. № 4. P. 287–296. https://doi.org/10.1134/S1067413623040045
  11. Brady N. C., Well R. R. Elementos da natureza e propriedades dos solos. 3 ed. Porto Alegre: Bookman, 2013. 686 p.
  12. Bric J. M., Bostock R. M., Silverstone S. E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane // Appl. Environ. Microb. 1991. V. 57. № 2. P. 535–538. https://doi.org/10.1128/AEM.57.2.535-538.1991
  13. Cross A. T., Aronson J. Plant-soil-microbe interactions and drivers in ecosystem development and ecological restoration // Front. Ecol. Evol. 2023. V. 11. 1216016. https://doi.org/10.3389/fevo.2023.1216016
  14. Darcy J. L., Schmidt S. K., Knelman J. E., Cleveland C. C., Castle S. C., Nemergut D. R. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat // Sci. Advances. 2018. V. 4. № 5. P. 1–7. https://doi.org/10.1126/sciadv.aaq0942
  15. Dergacheva M., Trunova V., Nekrasova O., Siromlya T., Uchaev A., Bazhina N., Betekhtina A. Assessment of the macro- and microelement composition of fly ash from 50-year-old ash dumps in the Middle Urals (Russia) // Metals. 2021. V. 11. № 10. 1589. https://doi.org/10.3390/met11101589
  16. Duc L., Noll M., Meier B. E., Bürgmann H., Zeyer J. High diversity of diazotrophs in the forefield of a receding alpine glacier // Microb. Ecol. 2009. V. 57. P. 179–190. https://doi.org/10.1007/s00248-008-9408-5
  17. Gajic G., Djurdjevic L., Kostic O., Jaric S., Mitrovic M., Pavlovic P. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes // Front. Environ. Sci. 2018. V. 6. № 124. P. 1–24. https://doi.org/10.3389/fenvs.2018.00124
  18. Gusewell S. N:P ratios in terrestrial plants: variation and functional significance // New Phytologist. 2004. V. 164 (2). P. 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
  19. Haichar F.e.Z., Santaella C., Heulin T., Achouak W. Root exudates mediated interactions belowground // Soil Biol. Biochem. 2014. V. 77. P. 69–80. https://doi.org/10.1016/j.soilbio.2014.06.017
  20. Hayes P. E., Turner B. L., Lambers H., Laliberte E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence // J. Ecol. 2014. V. 102. P. 396–410. https://doi.org/10.1111/1365-2745.12196
  21. Hsu S.-F., Buckley D. H. Evidence for the functional significance of diazotroph community structure in soil // ISME J. 2009. V. 3. № 1. P. 124–136.
  22. Koerselman W., Meuleman A. F. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation // J. Appl. Ecol. 1996. V. 33. № 6. P. 1441–1450. https://doi.org/10.2307/2404783
  23. Kostić O., Jarić S., Gajić G., Pavlović D., Pavlović M., Mitrović M., Pavlović P. Pedological properties and ecological implications of substrates derived 3 and 11 years after the revegetation of lignite fly ash disposal sites in Serbia // Catena. 2018. V. 163. P. 78–88. https://doi.org/10.1016/j.catena.2017.12.010
  24. Krishnaraj P. U., Dahale S. K. Mineral Phosphate Solubilization: Concepts and Prospects in Sustainable Agriculture // Proc. Indian Natl. Sci. Acad. 2014. V. 80. 32. P. 389–405. https://doi.org/10.16943/ptinsa/2014/v80i2/55116
  25. Lambers H., Chapin F. S., Pons T. L. Plant physiological ecology. New York: Springer, 2008. V. 2. 605 p. https://doi.org/10.2307/176572
  26. Lauber C. L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale // Appl. Environ. Microbiol. 2009. V. 75. P. 5111–5120. https://doi.org/10.1128/AEM.00335-09
  27. Lauber C. L., Strickland M. S., Bradford M. A., Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types // Soil Biol. Biochem. 2008. V. 40. № 9. P. 2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021
  28. Li Y., Yuan L., Xue S., Liu B., Jin, G. Artificial root exudates excite bacterial nitrogen fixation in the subsurface of mine soils // Appl. Soil Ecol. 2021. V. 157. 103774. https://doi.org/10.1016/j.apsoil.2020.103774
  29. Ling N., Wang T., Kuzyakov Y. Rhizosphere bacteriome structure and functions // Nat. Commun. 2022. V. 13. № 1. 836. https://doi.org/10.1038/s41467-022-28448-9
  30. Maiti D., Pandey V. C. Metal remediation potential of naturally occurring plants growing on barren fly ash dumps // Environ. Geochem. Health. 2020. V. 43. P. 1415–1426. https://doi.org/10.1007/s10653-020-00679-z
  31. Mapelli F., Marasco R., Fusi M., Scaglia B., Tsiamis G., Rolli E., Fodelianakis S., Bourtzis K., Ventura S., Tambone F., Adani F., Borin S., Daffonchio D. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence // ISME J. 2018. V. 12. № 5. P. 1188–1198. https://doi.org/10.1038/s41396-017-0026-4
  32. Muñoz G., Orlando J., Zuñiga-Feest A. Plants colonizing volcanic deposits: root adaptations and effects on rhizosphere microorganisms // Plant Soil. 2021. V. 461. P. 265–279. https://doi.org/10.1007/s11104-020-04783-y
  33. Naz M., Dai Z., Hussain S., Tariq M., Danish S., Khan I. U., Qi S., Du D. The soil pH and heavy metals revealed their impact on soil microbial community // J. Environ. Manage. 2022. V. 321. 115770. https://doi.org/10.1016/j.jenvman.2022.115770
  34. Nekrasova O., Radchenko T., Filimonova E., Lukina N., Glazyrina M., Dergacheva M., Uchaev A., Betekhtina A. Natural forest colonisation and soil formation on ash dump in southern taiga // Folia Forest. Pol. 2020. V. 62. № 4. P. 306–316.
  35. https://doi.org/10.2478/ffp-2020-0029
  36. Nekrasova O., Radchenko T., Filimonova E., Uchaev A., Dergacheva M., Petrova T., Betekhtina A. Features of forest communities and soils formed on an ash dump of the middle Urals // For. Ideas. 2022. V. 28. № 1 (63). P. 88–99.
  37. Ribeiro C. M., Cardoso E. J. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia) // Microbiol. Res. 2012. V. 167. № 2. P. 69–78. https://doi.org/10.1016/j.micres.2011.03.003
  38. Shanmugam S. G., Kingery W. L. Changes in soil microbial community structure in relation to plant succession and soil properties during 4000 years of pedogenesis // Europ. J. Soil Biol. 2018. V. 88. P. 80–88. https://doi.org/10.1016/j.ejsobi.2018.07.003
  39. Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling // FEMS Microbiol. Rev. 2007. V. 31. № 4. P. 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  40. The Plant List [Электронный ресурс]. URL: http://www.theplantlist.org/ (дата обращения: 21.11.2022).
  41. Unkovich M., Baldock J. Measurement of asymbiotic N2 fixation in Australian agriculture // Soil Biol. Biochem. 2008. V. 40. № 12. P. 2915–2921. https://doi.org/10.1016/j.soilbio.2008.08.021
  42. Uzarowicz Ł., Kwasowski W., Śpiewak O., Świtoniak M. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Bełchatów thermal power station (central Poland) // Soil Sci. Ann. 2018. V. 69. № 1. P. 49–59. https://doi.org/10.2478/ssa-2018-0006
  43. van Schöll L., Kuyper T. W., Smits M. M., Landeweert R., Hoffland E., Breemen N. V. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles // Plant and Soil. 2008. V. 303. P. 35–47. https://doi.org/10.1007/s11104-007-9513-0
  44. Wahl S., Ryser P. Root tissue structure is linked to ecological strategies of grasses // New Phytol. 2000. V. 148. № 3. P. 459–471. https://doi.org/10.1046/j.1469-8137.2000.00775.x
  45. Zhan J., Sun Q. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings // Microbiol. Res. 2012. V. 167. P. 157–165. https://doi.org/10.1016/j.micres.2011.05.006
  46. Zhong H., Zhou J., Wong W-S., Cross A., Lambers H. Exceptional nitrogen-resorption efficiency enables Maireana species (Chenopodiaceae) to function as pioneers at a mine-restoration site // Sci. Tot. Environ. 2021. V. 779. 146420. https://doi.org/10.1016/j.scitotenv.2021.146420

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Nitrogen content in leaves of monocotyledonous and dicotyledonous plant species on ash dumps of different ages: (a) – young ash dump, (b) – old ash dump. Point – arithmetic mean (n = 26), shaded area – SE, end marks – SD. Different Latin letters indicate significant differences between variants at p < 0.05.

Жүктеу (30KB)
3. Fig. 2. Phosphorus content in leaves of monocotyledonous (cereals) and dicotyledonous herbaceous plants in ash dumps of different ages at VTGRES: (a) – young ash dump, (b) – old ash dump. Point – arithmetic mean value (n = 26), shaded area – SE, end marks – SD. Different Latin letters indicate reliable differences between variants at p < 0.05.

Жүктеу (34KB)
4. Fig. 3. Percentage distribution of nitrogen-fixing rhizobacteria strains isolated from monocots (inner volume circle) and dicots (outer circle with dots) plants with different phosphate solubilization abilities in young (a) and old (b) ash dumps.

Жүктеу (35KB)
5. Fig. 4. Percentage distribution of strains of nitrogen-fixing rhizobacteria isolated from monocots (inner volume circle) and dicots (outer circle with dots) plants with different ability to synthesize IAA in young (a) and old (b) ash dumps.

Жүктеу (34KB)

© Russian Academy of Sciences, 2025