Activity of antioxidant enzymes and expression of the genes encoding them in leaves of wheat plants with different allelic status of the GPC-B1 gene with optimal zinc content in the environment and its deficiency

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

It has been shown that the studied variants of bread wheat plants are resistant to zinc deficiency in substrate. Various ways of adaptation to these conditions by the antioxidant system have been discovered in plants that have a functional allele of the GPC-B1 gene. Thus, in plants of line 15-7-1, the maintain of the redox balance of cells is associated with an increase in the expression of the Cu/ZnSOD gene and a decrease in the expression of the FeSOD and CAT1 genes, whereas in plants of line 13-3, in addition to an increase in the transcripts content of the Cu/ZnSOD gene, with a high constitutive activity of superoxide dismutase (SOD) and catalase (CAT). The data obtained can be used to create wheat varieties (lines) capable of producing seeds with a relatively high content of zinc under zinc deficiency in the soil.

Авторлар туралы

Yu. Batova

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: batova.krc@mail.ru
Ресей, sst. Pushkinskaya, 11, Petrozavodsk, 185910

N. Repkina

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: batova.krc@mail.ru
Ресей, sst. Pushkinskaya, 11, Petrozavodsk, 185910

А. Ignatenko

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: batova.krc@mail.ru
Ресей, sst. Pushkinskaya, 11, Petrozavodsk, 185910

N. Kaznina

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: batova.krc@mail.ru
Ресей, sst. Pushkinskaya, 11, Petrozavodsk, 185910

Әдебиет тізімі

  1. Ван В., Ся М. К., Чэнь Дж., Юань Р., Дэн Ф. Н., Шэнь Ф. Ф. Особенности генной экспрессии и механизмы регуляции супероксиддисмутазы, ее физиологическая роль при стрессе // Биохимия. 2016. Т. 81. С. 625–643.
  2. Елькина Г. Я. Влияние различного содержания цинка в почве на аминокислотный состав биомассы кормовых трав // Агрохимия. 2020. № 4. С. 57–65. doi: 10.31857/S0002188120040043
  3. Игнатенко А. А., Казнина Н. М., Батова Ю. В., Дубовец Н. И. Ответная реакция растений пшеницы с разным аллельным состоянием гена GPС-B1 на дефицит цинка в субстрате //Труды Карельского научного центра РАН. 2021. № 11. С. 103–112. http://dx.doi.org/10.17076/eb1502
  4. Митрофанова О. П., Хакимова А. Г. Новые генетические ресурсы в селекции пшеницы на увеличение содержания белка в зерне // Вавиловский журнал генетики и селекции. 2016 Т. 20. № 4. С.545-554. doi: 10.18699/VJ16.177
  5. Aebi H. Catalase in vitro // Method Enzymol. 1984. V. 105. P. 121–126. doi: 10.1016/s0076-6879(84)05016-3
  6. Beauchamp C., Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels //Analytical Biochemistry. 1971.V. 44. P. 276–287. doi: 10.1016/0003-2697(71)90370-8
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. doi: 10.1006/abio.1976.9999
  8. Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species // New Phytol. 2000. V. 146. P. 185–205. doi: 10.1046/j.1469-8137.2000.00630.x
  9. Cakmak I., Marschner H. Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves // Plant nutrition from genetic engineering to field practice / N.J. Barrow (Ed.). 1993. Kluwer Academic Publishers. P. 133–137. https://doi.org/10.1007/BF00025000
  10. Cakmak I., McLaughlin M.J., White P. Zinc for better crop production and human health // Plant Soil. 2017. V. 411. P. 1–4. doi: 10.1007/s11104-016-3166-9
  11. Cakmak I., Öztürk L., Eker S., Torun B., Kalfa H. I., Yilmaz A. Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency // J. Plant Physiol. 1997. V. 151. P. 91–95.
  12. Cakmak I., Torun B., Erenoğlu B., Öztürk L., Marschner H., Kalayci M., Ekiz H., Yilmaz A. Morphological and physiological differences in the response of cereals to zinc deficiency. // Euphytica. 1998. V. 100. P. 349–357.
  13. Campos A. C.A.L., Kruijer W., Alexander R., Akkers R. C., Danku J., Salt D. E., Aarts M. G.M. Natural variation in Arabidopsis thaliana reveals shoot ionome, biomass, and gene expression changes as biomarkers for zinc deficiency tolerance // J. Exp. Bot. 2017. V. 68. P. 3643–3656. doi: 10.1093/jxb/erx191
  14. Chen W., Yang X., He Z., Feng Y., Hu F. Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress // Physiologia Plantarum. 2008. V. 132. P. 89–101. doi: 10.1111/j.1399-3054.2007.00992.x
  15. Cheng L., Zhang S., Yang L., Wang Y., Yu B., Zhang F. Comparative proteomics illustrates the complexity of Fe, Mn and Zn defciencyresponsive mechanisms of potato (Solanum tuberosum L.) plants in vitro // Planta. 2019. V. 250. P. 199–217. https://doi.org/10.1007/s00425-019-03163-w
  16. Deshpande P., Dapkekar A., Oak M., Paknikar K. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat // PLOS ONE. 2018. V. 13. № 1. P. e0191035. https://doi.org/ 10.1371/journal.pone.0191035
  17. Genc Y., McDonald G.K. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat // Plant and Soil. 2004. V. 262. P. 23–32/
  18. Genc Y., McDonald G.K., Graham R. D. A soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plants //Aust. J. Agric. Res. 2002. V. 53. P. 409 – 421. doi: 10.1071/AR01088
  19. Gill S. S., Anjum N. A., Gill R., Yadav S., Hasanuzzaman M., Fujita M., Mishra P., Sabat S. C., Tuteja N. Superoxide dismutase – mentor of abiotic stress tolerance in crop plants // Environ. Sci. Pollut. Res. 2015. V. 22. P. 10375 –10394. doi: 10.1007/s11356-015-4532-5
  20. Gill S. S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants // Plant Physiol. Biochem. 2010. V. 48. P. 909–930. doi: 10.1016/j.plaphy.2010.08.016
  21. Guzman C., Medina-Larque A.S., Velu G., Gonzalez-Santoyo H., Singh R. P., Huerta-Espino J., Ortiz-Monasterio I., Pena R. J. Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality // Journal of Cereal Science. 2014. V. 60. P. 617–622. http://dx.doi.org/10.1016/j.jcs.2014.07.006 0733-5210
  22. Hacisalihoglu G., Hart J. J., Wang Y-H., Cakmak I., Kochian L. V. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat // Plant Physiol. 2003. V. 131. P. 595–602. www.plantphysiol.org/cgi/doi/10.1104/pp.011825
  23. Hajiboland R., Amirazad F. Growth, photosynthesis and antioxidant defense system in Zn-defcient red cabbage plants // Plant Soil Environ. 2010. V. 56. P. 209–217. doi: 10.17221/207/2009-PSE
  24. Heath R. L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189–198. doi: 10.1016/0003-9861(68)90654-1
  25. Höller S., Hajirezaei M-R., von Wirén N., Frei M. Ascorbate metabolism in rice genotypes differing in zinc efficiency // Planta. 2014a. V. 239. P. 367–379. doi: 10.1007/s00425-013-1978-x
  26. Höller S., Meyer A., Frei M. Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level // J. Plant Physiol. 2014b. V. 171. P. 1748–1756. http://dx.doi.org/10.1016/j.jplph.2014.08.012
  27. Jiang W., Yang L., He Y., Zhang H., Li W., Chen H., Ma D., Yin J. Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum) // Peer J. 2019. V. 7: e8062 https://doi.org/10.7717/peerj.8062
  28. Kaznina N. M., Dubovets N. I., Repkina N. S., Batova Y. V., Ignatenko A. A., Orlovskaya O. A., Titov A. F. The HMA2 gene expression in leaves of introgressive wheat lines under Zn optimum and deficiency content in root environment // Doklady biochemistry and biophysics. 2022. V. 505. P. 141–144. doi: 10.1134/S1607672922040056
  29. Kim Y. C., Miller C. D., and Anderson A. J. Transcriptional regulation by iron of genes encoding iron and manganese_superoxidedismutases from Pseudomonas putida // Gene. 1999. V. 239. P. 129–135. doi: 10.1016/s0378-1119(99)00369-8
  30. Li Y., Zhang Y., Shi D., Liu X., Qin J., Ge Q., Xu L., Pan X., Li W., Zhu Y., Xu J. Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor // New Phytol. 2013. V. 200. P. 1102–1115. doi: 10.1111/nph.12434
  31. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 –ΔΔCt method // Methods. 2001. V. 25. P. 402–408. doi: 10.1006/meth.2001.1262
  32. Marschner H. Mineral nutrition of higher plants. 1995. London: Academic Press. 889 p.
  33. Mukhopadhyay M., Das A., Subba P., Bantawa P., Sarkar B., Ghosh P., Mondal T. K. Structural, physiological, and biochemical profiling of tea plants under zinc stress // Biologia Plantarum. 2013. V. 57. P. 474–480. doi: 10.1007/s10535-012-0300-2
  34. Nagae M., Nakata M., Takahashi Y. Identification of Negative cis-Acting Elements in Response to Copper in the Chloroplastic Iron Superoxide Dismutase Gene of the Moss Barbula unguiculata // Plant Physiol. 2008. V. 146. P. 1687–1696. DOI:/10.1104/pp.107.114868
  35. Orendi G., Zimmermann P., Baar C., Zentgraf U. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress / Plant Science. 2001. V. 161. P. 301–314. doi: 10.1016/s0168-9452(01)00409-5
  36. Pandey N., Gupta B., Pathak G. C. Antioxidant response of pea genotypes to zinc deficiency // Физиология растений. 2012. Т. 59. С. 225–231. doi: 10.1134/S1021443712010141
  37. Rehman A., Farooq M., Ozturk L., Asif M., Siddique K. H.M. Zinc nutrition in wheat-based cropping systems // Plant Soil. 2018. V. 422. P. 283–315. https://doi.org/10.1007/s11104-017-3507-3
  38. Saini P., Kaur H., Tyagi V., Yadav A. N., Saini P., Sharma V., Singh C., Dhaliwal H. S., Sheikh I. Genetic enhancement of nutritional and end-use quality in bread wheat through alien introgressions from wild relatives // Cereal Research Communications. 2023. V. 51. P. 295–314. https://doi.org/10.1007/s42976-022-00309-7
  39. Sharma P. N., Kumar P., Tewari R. K. Early signs of oxidative stress in wheat plants subjected to zinc deficiency // J. Plant Nutr. 2004. V. 27. P. 451–463. doi: 10.1081/PLN-120028873
  40. Tabbita F., Pearce S., Barneix A. J. Breeding for increased grain protein and micronutrient content in wheat: Ten years of the GPC-B1 gene // Journal of Cereal Science. 2017. V. 73. P. 183–191. http://dx.doi.org/10.1016/j.jcs.2017.01.003
  41. Tewari R. K., Kumar P., Sharma P. N. An efective antioxidant defense provides protection against zinc defciency-induced oxidative stress in Zn-efcient maize plants // J. Plant Nutr. Soil Sci. 2019. V. 182. P. 701–707. doi: 10.1002/jpln.201800622
  42. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc and irons content in wheat // Science. 2006. V. 314. P. 1298–1300. doi: 10.1126/science.1133649
  43. Velu G., Herrera L. C., Guzman C., Huerta J., Payne T., Singh R. P. Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations // Front. Plant Sci. 2019. V. 9.1971. https://doi.org/10.3389/fpls.2018.01971
  44. Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R. P. Biofortification strategies to increase grain zinc and iron concentrations in wheat // J. Cereal Sci. 2014. V. 59. P. 365–372. https://doi.org/10.1016/j.jcs.2013.09.001
  45. Vishwakarma M. K., Mishra V. K., Gupta P. K., Yadav P. S., H. Kumar, Joshi A. K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding // Current Plant Biology. 2014. V. 1. P. 60–67. http://dx.doi.org/10.1016/j.cpb.2014.09.003
  46. Wang H., Jin J. Effects of zinc deficiency and drought on plant growth and metabolism of reactive oxygen species in maize (Zea mays L.) // Agric. Sci. China. 2007. V. 6. P. 988–995. doi: 10.1016/S1671-2927(07)60138-2
  47. Waters B. M., Uauy C., Dubcovsky J., Grusak M. A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain // J. Exp. Bot. 2009. V. 60. P. 4263–4274. doi: 10.1093/jxb/erp257
  48. WHO. The World Health Report // Geneva: World Health Organization. 2017.
  49. Xu J., Tian Y. S., Peng R. H., Xiong A. S., Zhu B., Jin X. F., Gao J. J., Hou X. L., and Yao Q. H. Yeast copper_dependent transcription factor ACE1 enhanced copper stress tolerance in Arabidopsis //BMB Rep. 2009. V. 42. P. 752–757. https://doi.org/10.5483/BMBRep.2009.42.11.752
  50. Zeng H., Zhang X., Ding M., Zhang X., Zhu Y. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency // Physiol. Plant. 2019. V. 167. P. 330–351. doi: 10.1111/ppl.12894

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024