Failure of a detonation wave in a plane channel with multiple obstacles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of numerical study of the interaction of a formed cellular detonation wave propagating in a plane channel occupied by a quiescent stoichiometric hydrogen-air mixture with multiple obstacles (barriers) located on the inner surface of the channel are given. The study is carried out to determine the conditions that ensure suppression of detonation. The influence of geometric parameters of the area with obstacles on wave propagation is studied. It is found that localization of the obstacles in a recess in the channel wall leads to a decrease in their destructive effect on detonation. Quenching of detonation combustion by the layer of a non-reacting gas located along the channel wall, limited by single barriers, is considered. The effect of gas composition on the interaction of the detonation wave with the layer is studied. Non-reacting gas mixtures, which, being filled into the area with obstacles, enhance the destructive effect of barriers on the detonation wave are proposed.

Full Text

Restricted Access

About the authors

T. A. Zhuravskaya

Institute of Mechanics, Moscow State University

Author for correspondence.
Email: zhuravskaya@imec.msu.ru
Russian Federation, Moscow

V. A. Levin

Institute of Mechanics, Moscow State University

Email: zhuravskaya@imec.msu.ru
Russian Federation, Moscow

References

  1. Васильев А.А., Пинаев А.В., Трубицын А.А., Грачёв А.Ю., Троцюк А.В., Фомин П.А., Трилис А.В. Что горит в шахте: метан или угольная пыль? // Физика горения и взрыва. 2017. Т. 53. № 1. С. 11–18. doi: 10.15372/FGV20170102. Vasil’ev A.A., Pinaev A.V., Trubitsyn A.A., Grachev A.Yu., Trotsyuk A.V., Fomin P.A., and Trilis A.V. What is burning in coal mines: Methane or coal dust? // Combust. Explos. Shock Waves. 2017. V. 53. P. 8–14. https://doi.org/10.1134/S0010508217010026
  2. Bedarev I.A., Fedorov A.V. Mathematical modeling of the detonation wave and inert particles interaction at the macro and micro levels // Journal of Physics: Conference Series. 2017. V. 894. Р. 012008. doi: 10.1088/1742-6596/894/1/012008.
  3. Тропин Д.А., Фёдоров А.В. Ослабление и подавление детонационных волн в реагирующих газовых смесях облаками инертных микро- и наночастиц // Физика горения и взрыва. 2018. Т. 54. № 2. С. 82–88. doi: 10.15372/FGV20180209.Tropin D.A., Fedorov A.V. Attenuation and Suppression of Detonation Waves in Reacting Gas Mixtures by Clouds of Inert Microand Nanoparticles // Combust. Explos. Shock Waves. 2018. V. 54. P. 200–206. https://doi.org/10.1134/S0010508218020090
  4. Obara T., Sentanuhady J., Tsukada Y., Ohyagi S. Reinitiation process of detonation wave behind a slit-plate // Shock Waves. 2008. V. 18. P. 117–127. https://doi.org/10.1007/s00193-008-0147-9
  5. Медведев С.П., Хомик С.В., Гельфанд Б.Е. Регенерация и подавление детонации водородовоздушной смеси преградой с отверстиями // Химическая физика. 2009. Т. 28. № 12. С. 52–60.Medvedev S.P., Khomik S.V., Gel’fand B.E. Recovery and suppression of the detonation of hydrogen-air mixtures at an obstacle with orifices // Russian Journal of Physical Chemistry B. 2009. V. 3. P. 963–970. https://doi.org/10.1134/S1990793109060165
  6. Qin H., Lee J.H.S., Wang Z., Zhuang F. An experimental study on the onset processes of detonation waves downstream of a perforated plate // Proceeding the Combustion Institute. 2015. V. 35. I. 2. P. 1973–1979. https://doi.org/10.1016/j.proci.2014.07.056
  7. Шарыпов О.В., Пирогов Е.А. О механизме ослабления и срыва газовой детонации в каналах с акустически поглощающими стенками // Физика горения и взрыва. 1995. Т. 31. № 4. С. 71–76.Sharypov O.V., Pirogov Y.A. On the mechanism of weakening and breaking of gas detonation in channels with acoustically absorbing walls // Comb. Expl. Shock Waves. 1995. V. 31. P. 466–470. https://doi.org/10.1007/BF00789368
  8. Teodorczyk A., Lee J.H.S. Detonation attenuation by foams and wire meshes lining the walls // Shock Waves. 1995. V. 4. P. 225–236. https://doi.org/10.1007/BF01414988
  9. Radulescu M.I., Lee J.H.S. The failure mechanism of gaseous detonations: experiments in porous wall tubes // Combustion and Flame. 2002. V. 131. I. 1-2. P. 29–46. http://dx.doi.org/10.1016/S0010-2180(02)00390-5
  10. Bivol G.Yu., Golovastov S.V., Golub V.V. Detonation suppression in hydrogen–air mixtures using porous coatings on the walls // Shock Waves. 2018. V. 28. P. 1011–1018. https://doi.org/10.1007/s00193-018-0831-3
  11. Yang T., He Q., Ning J., Li J. Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder // International Journal of Hydrogen Energy. 2022. V. 47. I. 25. P. 12711–12725. https://doi.org/10.1016/j.ijhydene.2022.01.230
  12. Tropin D., Temerbekov V. Numerical simulation of detonation wave propagation through a rigid permeable barrier // International Journal of Hydrogen Energy. 2022. V. 47. No. 87. P. 37106–37124. https://doi.org/10.1016/j.ijhydene.2022.08.256
  13. Левин В.А., Журавская Т.А. Управление детонационным горением посредством предварительной подготовки газовой смеси // Письма в ЖТФ. 2020. Т. 46. № 4. С. 40–44. https://doi.org/10.21883/PJTF.2020.04.49050.18074Levin V.A., Zhuravskaya T.A. Detonation Combustion Control Using Preliminary Preparation of the Gas Mixture // Tech. Phys. Lett. 2020. V. 46. № 2. P. 189–192. https://doi.org/10.1134/S1063785020020248
  14. Журавская Т.А., Левин В.А. Управление детонационной волной в канале с препятствиями посредством предварительной подготовки газовой смеси // Известия РАН. Механика жидкости и газа. 2020. № 4. С. 59–68.Zhuravskaya T.A., Levin V.A. Control of a Detonation Wave in a Channel with Obstacles Using Preliminary Gas Mixture Preparation // Fluid Dynamics. 2020. № 55. P. 488–497. https://doi.org/10.1134/S0015462820040138
  15. Левин В.А., Журавская Т.А. Управление детонационным горением водородно-воздушной смеси посредством внесения аргона и озона // Доклады Российской академии наук. Физика, технические науки. 2021. № 501. С. 48–53.Levin V.A., Zhuravskaya T.A. Control of detonation combustion of a hydrogen–air mixture by argon and ozone addition // Doklady Physics. 2021. № 66. P. 320–324. https://doi.org/10.1134/S1028335821110057
  16. Левин В.А., Журавская Т.А. Гашение детонационного горения водородно-воздушной смеси в плоском канале // Письма в Журнал технической физики. 2023. Т. 49. № 18. С. 42–46. https://doi.org/10.21883/PJTF.2023.18.56177.19657
  17. Термодинамические свойства индивидуальных веществ / Под ред. В.П. Глушко и др. Т. I. Кн. 2. М.: Наука, 1978. 328 с.Thermodynamic Properties of Individual Substances / Ed. by L.V. Gurvich and I.V. Veyts. V. 1. Part 2. New York: Hemisphere, 1989.
  18. Bezgin L.V., Kopchenov V.I., Sharipov A.S., Titova N.S., Starik A.M. Evaluation of Prediction Ability of Detailed Reaction Mechanisms in the Combustion Performance in Hydrogen/Air Supersonic Flows // Combustion Science and Technology. 2013. V. 185. I. 1. P. 62–94. https://doi.org/10.1080/00102202.2012.709562
  19. Годунов С.К., Забродин А.В., Иванов М.Я. и др. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 c.
  20. Колган В.П. Применение принципа минимальных значений производной к построению конечно-разностных схем для расчета разрывных решений газовой динамики // Уч. зап. ЦАГИ. 1972. Т. 3. № 6. С. 68–77.
  21. Van Leer B. Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection // Journal of Computational Physics. 1977. No. 23. P. 276–299.
  22. Родионов А.В. Монотонная схема второго порядка аппроксимации для сквозного расчёта неравновесных течений // Журн. вычисл. матем. и матем. физ. 1987. Т. 27. № 4. С. 585–593.Rodionov A.V. Monotonic scheme of the second order of approximation for the continuous calculation of non-equilibrium flows // USSR Computational Mathematics and Mathematical Physics. 1987. V. 27. I. 2. P. 175–180. https://doi.org/10.1016/0041-5553(87)90174-1
  23. Voevodin V.l., Antonov A., Nikitenko D., Shvets P., Sobolev S., Sidorov I., Stefanov K., Voevodin Vad., Zhumatiy S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community // Supercomputing Frontiers and Innovations. 2019. V. 6. No. 2. P. 4–11. https://doi.org/10.14529/jsfi190201
  24. Солоухин Р.И. Ударные волны и детонация в газах. М.: ГИФМЛ, 1963. 176 с.Soloukhin R.I. Shock Waves and Detonations in Gases. Baltimore: Mono Book, 1966.
  25. Pintgen F., Eckett C.A., Austin J.M., Shepherd J.E. Direct observations of reaction zone structure in propagating detonations // Combustion and Flame. 2003. V. 133. I. 3. P. 211–229. https://doi.org/10.1016/S0010-2180(02)00458-3
  26. Ciccarelli G., Ginsberg T., Boccio J., Finfrock C., Gerlach L., Tagawa H., Malliakos A. Detonation Cell Size Measurements in High-Temperature Hydrogen–Air–Steam Mixtures at BNL High-Temperature Combustion Facility // Brookhaven National Laboratory Rep. 1997. NUREG/CR-6391, BNL-NUREG-52482.
  27. Shepherd J.E. Chemical kinetics of hydrogen-air-diluent detonations // Progress in Astronautics and Aeronautics. 1986. V. 106. P. 263–293.
  28. Bull D.C., Elsworth J.E., Shuff P.J. Detonation cell structures in fuel/air mixtures // Combust. Flame. 1982. V. 45. P. 7–22. https://doi.org/10.1016/0010-2180(82)90028-1
  29. Taylor B.D., Kessler D.A., Gamezo V.N., Oran E.S. Numerical simulations of hydrogen detonations with detailed chemical kinetics // Proceedings of the Combustion Institute. 2013. V. 34. I. 2. P. 2009–2016. https://doi.org/10.1016/j.proci.2012.05.045
  30. Георгиевский П.Ю., Левин В.А., Сутырин О.Г. Взаимодействие ударной волны с продольным слоем газа пониженной плотности // Изв. РАН. Механика жидкости и газа. 2016. № 5. С. 125–132.Georgievskii P.Y., Levin V.A., Sutyrin O.G. Interaction between a shock wave and a longitudinal low-density gas layer // Fluid Dynamics. 2016. V. 51. № 5. P. 696–702. https://doi.org/10.1134/S0015462816050148

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences