Current Targets and Future Directions of Positive Inotropes for Heart Failure


Дәйексөз келтіру

Толық мәтін

Аннотация

:While a congestive heart failure patient will ultimately need an assist device or even a replacement heart as the disease progresses, not every patient is qualified for such advanced therapy. Such patients awaiting better circulatory support benefit from positive inotropes in the meantime as palliative care. These agents are often prescribed in patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and symptoms of organ dysfunction. Although positive inotropes, for example, digoxin, dobutamine, milrinone, levosimendan, etc., are successfully marketed and in use, a lot of their adverse effects, like arrhythmias, hypotension, and even sudden cardiac death, are rather encouraging further research on the development of novel positive inotropes. This review has investigated the molecular mechanisms of some of these adverse effects in terms of the proteins they target, followed by research on newer targets. Studies from 2013-2023 that have reported new small molecules with positive inotropic effects have been revisited in order to determine the progress made so far in drug discovery.

Авторлар туралы

Shadreen Fairuz

School of Science, Monash University

Email: info@benthamscience.net

Chee Ang

School of Science, Monash University

Email: info@benthamscience.net

Fatima Mraiche

Department of Pharmacology, University of Alberta

Email: info@benthamscience.net

Joo Goh

School of Science, Monash University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail., 2020, 22(8), 1342-1356. doi: 10.1002/ejhf.1858 PMID: 32483830
  2. Kannel, W.B. Incidence and epidemiology of heart failure. Heart Fail. Rev., 2000, 5(2), 167-173. doi: 10.1023/A:1009884820941 PMID: 16228142
  3. Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res., 2023, 118(17), 3272-3287. doi: 10.1093/cvr/cvac013 PMID: 35150240
  4. Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; Drazner, M.H.; Felker, G.M.; Filippatos, G.; Fonarow, G.C.; Fiuzat, M.; Gomez-Mesa, J.E.; Heidenreich, P.; Imamura, T.; Januzzi, J.; Jankowska, E.A.; Khazanie, P.; Kinugawa, K.; Lam, C.S.P.; Matsue, Y.; Metra, M.; Ohtani, T.; Francesco Piepoli, M.; Ponikowski, P.; Rosano, G.M.C.; Sakata, Y.; SeferoviĆ, P.; Starling, R.C.; Teerlink, J.R.; Vardeny, O.; Yamamoto, K.; Yancy, C.; Zhang, J.; Zieroth, S. Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure. J. Card. Fail., 2021, 27(4), 387-413. doi: 10.1016/j.cardfail.2021.01.022 PMID: 33663906
  5. Francis, G.S.; Tang, W.H. Pathophysiology of congestive heart failure. Rev. Cardiovasc. Med., 2003, 4(S2)(Suppl. 2), S14-S20. PMID: 12776009
  6. Link, M.G.; Yan, G.X.; Kowey, P.R. Evaluation of toxicity for heart failure therapeutics: studying effects on the QT interval. Circ. Heart Fail., 2010, 3(4), 547-555. doi: 10.1161/CIRCHEARTFAILURE.109.917781 PMID: 20647490
  7. Malik, A.; Brito, D.; Vaqar, S.; Chhabra, L. Congestive heart failure. Stat Pearls; Stat Pearls Publishing, 2022.
  8. Kosaraju, A.; Goyal, A.; Grigorova, Y.; Makaryus, A.N. Left ventricular ejection fraction. Stat Pearls; Stat Pearls Publishing. 2017.
  9. Francis, G.S.; Bartos, J.A.; Adatya, S. Inotropes. J. Am. Coll. Cardiol., 2014, 63(20), 2069-2078. doi: 10.1016/j.jacc.2014.01.016 PMID: 24530672
  10. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.P.; Lyon, A.R.; McMurray, J.J.V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.C.; Ruschitzka, F.; Kathrine Skibelund, A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail., 2022, 24(1), 4-131. doi: 10.1002/ejhf.2333 PMID: 35083827
  11. Tariq, S.; Aronow, W. Use of inotropic agents in treatment of systolic heart failure. Int. J. Mol. Sci., 2015, 16(12), 29060-29068. doi: 10.3390/ijms161226147 PMID: 26690127
  12. Pinnell, J.; Turner, S.; Howell, S. Cardiac muscle physiology. Contin. Educ. Anaesth. Crit. Care Pain, 2007, 7(3), 85-88. doi: 10.1093/bjaceaccp/mkm013
  13. Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and excitation-contraction coupling in the heart. Circ. Res., 2017, 121(2), 181-195. doi: 10.1161/CIRCRESAHA.117.310230 PMID: 28684623
  14. Barry, S.P.; Townsend, P.A. What causes a broken heart--molecular insights into heart failure. Int. Rev. Cell Mol. Biol., 2010, 284, 113-179. doi: 10.1016/S1937-6448(10)84003-1 PMID: 20875630
  15. Ziff, O.J.; Kotecha, D. Digoxin: The good and the bad. Trends Cardiovasc. Med., 2016, 26(7), 585-595. doi: 10.1016/j.tcm.2016.03.011 PMID: 27156593
  16. Ahmad, T.; Miller, P.E.; McCullough, M.; Desai, N.R.; Riello, R.; Psotka, M.; Böhm, M.; Allen, L.A.; Teerlink, J.R.; Rosano, G.M.C.; Lindenfeld, J. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur. J. Heart Fail., 2019, 21(9), 1064-1078. doi: 10.1002/ejhf.1557 PMID: 31407860
  17. Colucci, W.S.; Wright, R.F.; Braunwald, E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 1. N. Engl. J. Med., 1986, 314(5), 290-299. doi: 10.1056/NEJM198601303140506 PMID: 2867470
  18. Nieminen, M.S.; Fruhwald, S.; Heunks, L.M.; Suominen, P.K.; Gordon, A.C.; Kivikko, M.; Pollesello, P. Levosimendan: current data, clinical use and future development. Heart Lung Vessel., 2013, 5(4), 227-245. PMID: 24364017
  19. Morth, J.P.; Pedersen, B.P.; Toustrup-Jensen, M.S.; Sørensen, T.L.M.; Petersen, J.; Andersen, J.P.; Vilsen, B.; Nissen, P. Crystal structure of the sodium–potassium pump. Nature, 2007, 450(7172), 1043-1049. doi: 10.1038/nature06419 PMID: 18075585
  20. Fuller, W.; Tulloch, L.B.; Shattock, M.J.; Calaghan, S.C.; Howie, J.; Wypijewski, K.J. Regulation of the cardiac sodium pump. Cell. Mol. Life Sci., 2013, 70(8), 1357-1380. doi: 10.1007/s00018-012-1134-y PMID: 22955490
  21. Wasserstrom, J.A.; Aistrup, G.L. Digitalis: new actions for an old drug. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(5), H1781-H1793. doi: 10.1152/ajpheart.00707.2004 PMID: 16219807
  22. Askari, A. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect., 2019, 7(4), e00505. doi: 10.1002/prp2.505 PMID: 31360524
  23. Habeck, M.; Haviv, H.; Katz, A.; Kapri-Pardes, E.; Ayciriex, S.; Shevchenko, A.; Ogawa, H.; Toyoshima, C.; Karlish, S.J.D. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites. J. Biol. Chem., 2015, 290(8), 4829-4842. doi: 10.1074/jbc.M114.611384 PMID: 25533463
  24. El-Seedi, H.R.; Khalifa, S.A.M.; Taher, E.A.; Farag, M.A.; Saeed, A.; Gamal, M.; Hegazy, M.E.F.; Youssef, D.; Musharraf, S.G.; Alajlani, M.M.; Xiao, J.; Efferth, T. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol. Res., 2019, 141, 123-175. doi: 10.1016/j.phrs.2018.12.015 PMID: 30579976
  25. Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris), 2021, 82(3-4), 193-197.
  26. Najafi, A.; Sequeira, V.; Kuster, D.W.D.; van der Velden, J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur. J. Clin. Invest., 2016, 46(4), 362-374. doi: 10.1111/eci.12598 PMID: 26842371
  27. Ciccarelli, M.; Sorriento, D.; Coscioni, E.; Iaccarino, G.; Santulli, G. Chapter 11 - Adrenergic receptors. Endocrinology of the Heart in Health and Disease. 2017, 285-315.
  28. Arrigo, M.; Mebazaa, A. Understanding the differences among inotropes. Intensive Care Med., 2015, 41(5), 912-915. doi: 10.1007/s00134-015-3659-7 PMID: 25605474
  29. Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; Zhang, L.; Leroy, J.; Leblais, V.; Fischmeister, R.; Vandecasteele, G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch. Cardiovasc. Dis., 2016, 109(6-7), 431-443. doi: 10.1016/j.acvd.2016.02.004 PMID: 27184830
  30. Kim, G.E.; Kass, D.A. Cardiac phosphodiesterases and their modulation for treating heart disease. Handb. Exp. Pharmacol., 2016, 243, 249-269. doi: 10.1007/164_2016_82 PMID: 27787716
  31. Preedy, M.E.J. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc. Drugs Ther., 2020, 34(3), 401-417. doi: 10.1007/s10557-020-06959-1 PMID: 32172427
  32. Mayhew, D.J.; Palmer, K. Inotropes. Anaesth. Intensive Care Med., 2015, 16(10), 508-512. doi: 10.1016/j.mpaic.2015.07.006
  33. Gilotra, N.A.; DeVore, A.D.; Povsic, T.J.; Hays, A.G.; Hahn, V.S.; Agunbiade, T.A.; DeLong, A.; Satlin, A.; Chen, R.; Davis, R.; Kass, D.A. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure. Circ. Heart Fail., 2021, 14(9), e008236. doi: 10.1161/CIRCHEARTFAILURE.120.008236 PMID: 34461742
  34. Hoffman, T.M. Phosphodiesterase inhibitors. Heart Failure in the Child and Young Adult; Elsevier, 2018, pp. 517-522. doi: 10.1016/B978-0-12-802393-8.00040-5
  35. Kamel, R.; Leroy, J.; Vandecasteele, G.; Fischmeister, R. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat. Rev. Cardiol., 2023, 20(2), 90-108. doi: 10.1038/s41569-022-00756-z PMID: 36050457
  36. Movsesian, M.; Ahmad, F.; Hirsch, E. Functions of PDE3 isoforms in cardiac muscle. J. Cardiovasc. Dev. Dis., 2018, 5(1), 10. doi: 10.3390/jcdd5010010 PMID: 29415428
  37. Li, M.X.; Hwang, P.M. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene, 2015, 571(2), 153-166. doi: 10.1016/j.gene.2015.07.074 PMID: 26232335
  38. Kalyva, A.; Parthenakis, F.I.; Marketou, M.E.; Kontaraki, J.E.; Vardas, P.E. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies. J. Muscle Res. Cell Motil., 2014, 35(2), 161-178. doi: 10.1007/s10974-014-9382-0 PMID: 24744096
  39. Grześk, G.; Wołowiec, Ł.; Rogowicz, D.; Gilewski, W.; Kowalkowska, M.; Banach, J.; Hertmanowski, W.; Dobosiewicz, M. The importance of pharmacokinetics, pharmacodynamic and repetitive use of levosimendan. Biomed. Pharmacother., 2022, 153, 113391. doi: 10.1016/j.biopha.2022.113391 PMID: 36076524
  40. Gonano, L.A.; Petroff, M.V. Subcellular mechanisms underlying digitalis-induced arrhythmias: role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ., 2014, 23(12), 1118-1124. doi: 10.1016/j.hlc.2014.07.074 PMID: 25201479
  41. Tse, G. Mechanisms of cardiac arrhythmias. J. Arrhythm., 2016, 32(2), 75-81. doi: 10.1016/j.joa.2015.11.003 PMID: 27092186
  42. Zhang, J.; Simpson, P.C.; Jensen, B.C. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(2), H725-H733. doi: 10.1152/ajpheart.00621.2020 PMID: 33275531
  43. Belletti, A.; Castro, M.L.; Silvetti, S.; Greco, T.; Biondi-Zoccai, G.; Pasin, L.; Zangrillo, A.; Landoni, G. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br. J. Anaesth., 2015, 115(5), 656-675. doi: 10.1093/bja/aev284 PMID: 26475799
  44. Pollesello, P.; Papp, Z.; Papp, J.G. Calcium sensitizers: What have we learned over the last 25years? Int. J. Cardiol., 2016, 203, 543-548. doi: 10.1016/j.ijcard.2015.10.240 PMID: 26580334
  45. Alsulami, K.; Marston, S. Small molecules acting on myofilaments as treatments for heart and skeletal muscle diseases. Int. J. Mol. Sci., 2020, 21(24), 9599. doi: 10.3390/ijms21249599 PMID: 33339418
  46. Meissner, G. The structural basis of ryanodine receptor ion channel function. J. Gen. Physiol., 2017, 149(12), 1065-1089. doi: 10.1085/jgp.201711878 PMID: 29122978
  47. Maxwell, J.T.; Domeier, T.L.; Blatter, L.A. Dantrolene prevents arrhythmogenic Ca 2+ release in heart failure. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(4), H953-H963. doi: 10.1152/ajpheart.00936.2011 PMID: 22180651
  48. Fischer, T.H.; Maier, L.S.; Sossalla, S. The ryanodine receptor leak: how a tattered receptor plunges the failing heart into crisis. Heart Fail. Rev., 2013, 18(4), 475-483. doi: 10.1007/s10741-012-9339-6 PMID: 22932727
  49. Hasenfuss, G.; Teerlink, J.R. Cardiac inotropes: current agents and future directions. Eur. Heart J., 2011, 32(15), 1838-1845. doi: 10.1093/eurheartj/ehr026 PMID: 21388993
  50. Marx, S.O.; Marks, A.R. Dysfunctional ryanodine receptors in the heart: New insights into complex cardiovascular diseases. J. Mol. Cell. Cardiol., 2013, 58, 225-231. doi: 10.1016/j.yjmcc.2013.03.005 PMID: 23507255
  51. Petzhold, D.; Lossie, J.; Keller, S.; Werner, S.; Haase, H.; Morano, I. Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity. Cardiovasc. Res., 2011, 90(3), 513-520. doi: 10.1093/cvr/cvr026 PMID: 21262909
  52. Planelles-Herrero, V.J.; Hartman, J.J.; Robert-Paganin, J.; Malik, F.I.; Houdusse, A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun., 2017, 8(1), 190. doi: 10.1038/s41467-017-00176-5 PMID: 28775348
  53. Kaplinsky, E.; Mallarkey, G. Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs Context, 2018, 7, 1-10. doi: 10.7573/dic.212518 PMID: 29707029
  54. Metra, M.; Pagnesi, M.; Claggett, B.L.; Díaz, R.; Felker, G.M.; McMurray, J.J.V.; Solomon, S.D.; Bonderman, D.; Fang, J.C.; Fonseca, C.; Goncalvesova, E.; Howlett, J.G.; Li, J.; O’Meara, E.; Miao, Z.M.; Abbasi, S.A.; Heitner, S.B.; Kupfer, S.; Malik, F.I.; Teerlink, J.R. Effects of omecamtiv mecarbil in heart failure with reduced ejection fraction according to blood pressure: the GALACTIC-HF trial. Eur. Heart J., 2022, 43(48), 5006-5016. doi: 10.1093/eurheartj/ehac293 PMID: 35675469
  55. Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; Böhm, M.; Bonderman, D.; Cleland, J.G.F.; Corbalan, R.; Crespo-Leiro, M.G.; Dahlström, U.; Echeverria, L.E.; Fang, J.C.; Filippatos, G.; Fonseca, C.; Goncalvesova, E.; Goudev, A.R.; Howlett, J.G.; Lanfear, D.E.; Li, J.; Lund, M.; Macdonald, P.; Mareev, V.; Momomura, S.; O’Meara, E.; Parkhomenko, A.; Ponikowski, P.; Ramires, F.J.A.; Serpytis, P.; Sliwa, K.; Spinar, J.; Suter, T.M.; Tomcsanyi, J.; Vandekerckhove, H.; Vinereanu, D.; Voors, A.A.; Yilmaz, M.B.; Zannad, F.; Sharpsten, L.; Legg, J.C.; Varin, C.; Honarpour, N.; Abbasi, S.A.; Malik, F.I.; Kurtz, C.E. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med., 2021, 384(2), 105-116. doi: 10.1056/NEJMoa2025797 PMID: 33185990
  56. Sikkel, M.B.; Hayward, C.; MacLeod, K.T.; Harding, S.E.; Lyon, A.R. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br. J. Pharmacol., 2014, 171(1), 38-54. doi: 10.1111/bph.12472 PMID: 24138023
  57. Zhihao, L.; Jingyu, N.; Lan, L.; Michael, S.; Rui, G.; Xiyun, B.; Xiaozhi, L.; Guanwei, F. SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev., 2020, 25(3), 523-535. doi: 10.1007/s10741-019-09873-3 PMID: 31701344
  58. Park, W.J.; Oh, J.G. SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep., 2013, 46(5), 237-243. doi: 10.5483/BMBRep.2013.46.5.077 PMID: 23710633
  59. Korpela, H.; Järveläinen, N.; Siimes, S.; Lampela, J.; Airaksinen, J.; Valli, K.; Turunen, M.; Pajula, J.; Nurro, J.; Ylä-Herttuala, S. Gene therapy for ischaemic heart disease and heart failure. J. Intern. Med., 2021, 290(3), 567-582. doi: 10.1111/joim.13308 PMID: 34033164
  60. Arcaro, A.; Lembo, G.; Tocchetti, C.G. Nitroxyl (HNO) for treatment of acute heart failure. Curr. Heart Fail. Rep., 2014, 11(3), 227-235. doi: 10.1007/s11897-014-0210-z PMID: 24980211
  61. Maack, C.; Eschenhagen, T.; Hamdani, N.; Heinzel, F.R.; Lyon, A.R.; Manstein, D.J.; Metzger, J.; Papp, Z.; Tocchetti, C.G.; Yilmaz, M.B.; Anker, S.D.; Balligand, J.L.; Bauersachs, J.; Brutsaert, D.; Carrier, L.; Chlopicki, S.; Cleland, J.G.; de Boer, R.A.; Dietl, A.; Fischmeister, R.; Harjola, V.P.; Heymans, S.; Hilfiker-Kleiner, D.; Holzmeister, J.; de Keulenaer, G.; Limongelli, G.; Linke, W.A.; Lund, L.H.; Masip, J.; Metra, M.; Mueller, C.; Pieske, B.; Ponikowski, P.; Ristić, A.; Ruschitzka, F.; Seferović, P.M.; Skouri, H.; Zimmermann, W.H.; Mebazaa, A. Treatments targeting inotropy. Eur. Heart J., 2019, 40(44), 3626-3644. doi: 10.1093/eurheartj/ehy600 PMID: 30295807
  62. Ferrandi, M.; Barassi, P.; Tadini-Buoninsegni, F.; Bartolommei, G.; Molinari, I.; Tripodi, M.G.; Reina, C.; Moncelli, M.R.; Bianchi, G.; Ferrari, P. Istaroxime stimulates SERCA2A and accelerates calcium cycling in heart failure by relieving phospholamban inhibition. Br. J. Pharmacol., 2013, 169(8), 1849-1861. doi: 10.1111/bph.12278 PMID: 23763364
  63. Avvisato, R.; Jankauskas, S.S.; Santulli, G. Istaroxime and beyond: New therapeutic strategies to specifically activate SERCA and treat heart failure. J. Pharmacol. Exp. Ther., 2023, 384(1), 227-230. doi: 10.1124/jpet.122.001446 PMID: 36581352
  64. Figueroa-Valverde, L.; Diaz-Cedillo, F.; Lopez-Ramos, M.; Garcia-Cervera, E.; Quijano, K.; Cordoba, J. Changes induced by estradiol-ethylenediamine derivative on perfusion pressure and coronary resistance in isolated rat heart: L-type calcium channel. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(1), 27-32. doi: 10.5507/bp.2011.018 PMID: 21475374
  65. Templeton, J.F.; Kumar, V.P.S.; Cote, D.; Bose, D.; Elliott, D.; Kim, R.S.; LaBella, F.S. Progesterone derivatives that bind to the digitalis receptor: synthesis of 14.beta.-hydroxyprogesterone: a novel steroid with positive inotropic activity. J. Med. Chem., 1987, 30(8), 1502-1505. doi: 10.1021/jm00391a038 PMID: 3612692
  66. López-Ramos, M.; Figueroa-Valverde, L.; Herrera-Meza, S.; Rosas-Nexticapa, M.; Díaz-Cedillo, F.; García-Cervera, E.; Pool-Gómez, E.; Cahuich-Carrillo, R. Design and synthesis of a new steroid-macrocyclic derivative with biological activity. J. Chem. Biol., 2017, 10(2), 69-84. doi: 10.1007/s12154-017-0165-0 PMID: 28405241
  67. Lauro, F.V.; Francisco, D.C.; Elodia, G.C.; Eduardo, P.G.; Marcela, R.N.; Lenin, H.H.; Betty, S.A. Design and synthesis of new dihydrotestosterone derivative with positive inotropic activity. Steroids, 2015, 95, 39-50. doi: 10.1016/j.steroids.2014.12.026 PMID: 25578737
  68. Rocchetti, M.; Besana, A.; Mostacciuolo, G.; Micheletti, R.; Ferrari, P.; Sarkozi, S.; Szegedi, C.; Jona, I.; Zaza, A. Modulation of sarcoplasmic reticulum function by Na+/K+ pump inhibitors with different toxicity: digoxin and PST2744 (E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride. J. Pharmacol. Exp. Ther., 2005, 313(1), 207-215. doi: 10.1124/jpet.104.077933 PMID: 15576469
  69. Metra, M.; Chioncel, O.; Cotter, G.; Davison, B.; Filippatos, G.; Mebazaa, A.; Novosadova, M.; Ponikowski, P.; Simmons, P.; Soffer, J.; Simonson, S. Safety and efficacy of istaroxime in patients with acute heart failure-related pre-cardiogenic shock – a multicentre, randomized, double-blind, placebo-controlled, parallel group study ( SEISMIC ). Eur. J. Heart Fail., 2022, 24(10), 1967-1977. doi: 10.1002/ejhf.2629 PMID: 35867804
  70. Arici, M.; Ferrandi, M.; Barassi, P.; Hsu, S.C.; Torre, E.; Luraghi, A.; Ronchi, C.; Chang, G.J.; Peri, F.; Ferrari, P.; Bianchi, G.; Rocchetti, M.; Zaza, A. Istaroxime metabolite PST3093 selectively stimulates SERCA2a and reverses disease-induced changes in cardiac function. J. Pharmacol. Exp. Ther., 2023, 384(1), 231-244. doi: 10.1124/jpet.122.001335 PMID: 36153005
  71. Luraghi, A.; Ferrandi, M.; Barassi, P.; Arici, M.; Hsu, S.C.; Torre, E.; Ronchi, C.; Romerio, A.; Chang, G.J.; Ferrari, P.; Bianchi, G.; Zaza, A.; Rocchetti, M.; Peri, F. Highly selective SERCA2a activators: Preclinical development of a congeneric group of first-in-class drug leads against heart failure. J. Med. Chem., 2022, 65(10), 7324-7333. doi: 10.1021/acs.jmedchem.2c00347 PMID: 35580334
  72. Meng, Q.; Yau, L.F.; Lu, J.G.; Wu, Z.Z.; Zhang, B.X.; Wang, J.R.; Jiang, Z.H. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. J. Ethnopharmacol., 2016, 187, 74-82. doi: 10.1016/j.jep.2016.03.062 PMID: 27063985
  73. Liang, G.; Chung, T.; Guo, J.; Zhang, R.; Xü, W.; Tzen, J.T.C.; Jiang, R. Novel cinobufagin oxime ether derivatives as potential Na+/K+-ATPase inhibitors: Synthesis, biological screening and molecular docking. Chem. Res. Chin. Univ., 2017, 33(3), 378-383. doi: 10.1007/s40242-017-6487-1
  74. Tang, H.J.; Ruan, L.J.; Tian, H.Y.; Liang, G.P.; Ye, W.C.; Hughes, E.; Esmann, M.; Fedosova, N.U.; Chung, T.Y.; Tzen, J.T.C.; Jiang, R.W.; Middleton, D.A. Novel stereoselective bufadienolides reveal new insights into the requirements for Na+, K+-ATPase inhibition by cardiotonic steroids. Sci. Rep., 2016, 6(1), 29155. doi: 10.1038/srep29155 PMID: 27377465
  75. Wink, M.; Roberts, M.F. Alkaloids: biochemistry, ecology, and medicinal applications; Plenum Press, 1998.
  76. Wei, J.W.; Liao, J.F.; Chuang, C.Y.; Chen, C.F.; Han, P.W. Cardiovascular effects of matrine isolated from the Chinese herb Shan-dou-gen. Proc. Natl. Sci. Counc. Repub. China B, 1985, 9(3), 215-219. PMID: 4070509
  77. Boido, V.; Ercoli, M.; Tonelli, M.; Novelli, F.; Tasso, B.; Sparatore, F.; Cichero, E.; Fossa, P.; Dorigo, P.; Froldi, G. New arylsparteine derivatives as positive inotropic drugs. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 588-599. doi: 10.1080/14756366.2017.1279156 PMID: 28133984
  78. Li, W. C. Application of 2,5 -dihydroxymethyl-3,6-dimethyl pyrazine and its derivates in pharmacy. US8158630B2, 2012.
  79. Liu, Z.; Li, W.; Wen, H.M.; Bian, H.M.; Zhang, J.; Chen, L.; Chen, L.; Yang, K.D. Synthesis, biological evaluation, and pharmacokinetic study of novel liguzinediol prodrugs. Molecules, 2013, 18(4), 4561-4572. doi: 10.3390/molecules18044561 PMID: 23599014
  80. Zhang, J.; Li, W.; Wen, H.M.; Zhu, H.H.; Wang, T.L.; Cheng, D.; Yang, K.D.; Chen, Y.Q. Synthesis and biological evaluation of liguzinediol mono- and dual ester prodrugs as promising inotropic agents. Molecules, 2014, 19(11), 18057-18072. doi: 10.3390/molecules191118057 PMID: 25379643
  81. Wu, Y.; Sun, L.P.; Ma, L.X.; Che, J.; Song, M.X.; Cui, X.; Piao, H.R. Synthesis and biological evaluation of 1,2,4triazolo3,4-aphthalazine and tetrazolo5,1-aphthalazine derivatives bearing substituted benzylpiperazine moieties as positive inotropic agents. Chem. Biol. Drug Des., 2013, 81(5), 591-599. doi: 10.1111/cbdd.12101 PMID: 23279930
  82. Ma, L.X.; Cui, B.R.; Wu, Y.; Liu, J.C.; Cui, X.; Liu, L.P.; Piao, H.R. Synthesis and positive inotropic evaluation of 1,2,4triazolo3,4-aphthalazine and tetrazolo5,1-aphthalazine derivatives bearing substituted piperazine moieties. Bioorg. Med. Chem. Lett., 2014, 24(7), 1737-1741. doi: 10.1016/j.bmcl.2014.02.040 PMID: 24636107
  83. Liu, X.K.; Ma, L.X.; Wei, Z.Y.; Cui, X.; Zhan, S.; Yin, X.M.; Piao, H.R. Synthesis and positive inotropic activity of 1,2,4triazolo4, 3-a quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties. Molecules, 2017, 22(2), 273. doi: 10.3390/molecules22020273 PMID: 28208674
  84. Humphrey, J.M.; Movsesian, M.; am Ende, C.W.; Becker, S.L.; Chappie, T.A.; Jenkinson, S.; Liras, J.L.; Liras, S.; Orozco, C.; Pandit, J.; Vajdos, F.F.; Vandeput, F.; Yang, E.; Menniti, F.S. Discovery of potent and selective periphery-restricted quinazoline inhibitors of the cyclic nucleotide phosphodiesterase PDE1. J. Med. Chem., 2018, 61(10), 4635-4640. doi: 10.1021/acs.jmedchem.8b00374 PMID: 29718668
  85. Hashimoto, T.; Kim, G.E.; Tunin, R.S.; Adesiyun, T.; Hsu, S.; Nakagawa, R.; Zhu, G.; O’Brien, J.J.; Hendrick, J.P.; Davis, R.E.; Yao, W.; Beard, D.; Hoxie, H.R.; Wennogle, L.P.; Lee, D.I.; Kass, D.A. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition: translational study in the dog and rabbit. Circulation, 2018, 138(18), 1974-1987. doi: 10.1161/CIRCULATIONAHA.117.030490 PMID: 30030415
  86. Muller, G.K.; Song, J.; Jani, V.; Wu, Y.; Liu, T.; Jeffreys, W.P.D.; O’Rourke, B.; Anderson, M.E.; Kass, D.A. PDE1 inhibition modulates Cav1. 2 channel to stimulate cardiomyocyte contraction. Circ. Res., 2021, 129(9), 872-886. doi: 10.1161/CIRCRESAHA.121.319828 PMID: 34521216
  87. Humphrey, J.M.; Yang, E.; am Ende, C.W.; Arnold, E.P.; Head, J.L.; Jenkinson, S.; Lebel, L.A.; Liras, S.; Pandit, J.; Samas, B.; Vajdos, F.; Simons, S.P.; Evdokimov, A.; Mansoura, M.; Menniti, F.S. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MedChemComm, 2014, 5(9), 1290-1296. doi: 10.1039/C4MD00113C
  88. Cleland, J.G.F.; Teerlink, J.R.; Senior, R.; Nifontov, E.M.; Mc Murray, J.J.V.; Lang, C.C.; Tsyrlin, V.A.; Greenberg, B.H.; Mayet, J.; Francis, D.P.; Shaburishvili, T.; Monaghan, M.; Saltzberg, M.; Neyses, L.; Wasserman, S.M.; Lee, J.H.; Saikali, K.G.; Clarke, C.P.; Goldman, J.H.; Wolff, A.A.; Malik, F.I. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet, 2011, 378(9792), 676-683. doi: 10.1016/S0140-6736(11)61126-4 PMID: 21856481
  89. Manickam, M.; Jalani, H.B.; Pillaiyar, T.; Sharma, N.; Boggu, P.R.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Jung, S.H. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure. Eur. J. Med. Chem., 2017, 134, 379-391. doi: 10.1016/j.ejmech.2017.04.005 PMID: 28432943
  90. Manickam, M.; Jalani, H.B.; Pillaiyar, T.; Boggu, P.R.; Sharma, N.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Son, M.J.; Woo, S.H.; Jung, S.H. Design and synthesis of sulfonamidophenylethylureas as novel cardiac myosin activator. Eur. J. Med. Chem., 2018, 143, 1869-1887. doi: 10.1016/j.ejmech.2017.10.077 PMID: 29224951
  91. Manickam, M.; Pillaiyar, T.; Namasivayam, V.; Boggu, P.R.; Sharma, N.; Jalani, H.B.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Son, M.J.; Woo, S.H.; Jung, S.H. Design and synthesis of sulfonamidophenylethylamides as novel cardiac myosin activator. Bioorg. Med. Chem., 2019, 27(18), 4110-4123. doi: 10.1016/j.bmc.2019.07.041 PMID: 31378598

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024