Current Targets and Future Directions of Positive Inotropes for Heart Failure
- Авторлар: Fairuz S.1, Ang C.1, Mraiche F.2, Goh J.1
-
Мекемелер:
- School of Science, Monash University
- Department of Pharmacology, University of Alberta
- Шығарылым: Том 31, № 42 (2024)
- Беттер: 6971-6991
- Бөлім: Anti-Infectives and Infectious Diseases
- URL: https://ter-arkhiv.ru/0929-8673/article/view/645152
- DOI: https://doi.org/10.2174/0109298673262360231018193823
- ID: 645152
Дәйексөз келтіру
Толық мәтін
Аннотация
:While a congestive heart failure patient will ultimately need an assist device or even a replacement heart as the disease progresses, not every patient is qualified for such advanced therapy. Such patients awaiting better circulatory support benefit from positive inotropes in the meantime as palliative care. These agents are often prescribed in patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and symptoms of organ dysfunction. Although positive inotropes, for example, digoxin, dobutamine, milrinone, levosimendan, etc., are successfully marketed and in use, a lot of their adverse effects, like arrhythmias, hypotension, and even sudden cardiac death, are rather encouraging further research on the development of novel positive inotropes. This review has investigated the molecular mechanisms of some of these adverse effects in terms of the proteins they target, followed by research on newer targets. Studies from 2013-2023 that have reported new small molecules with positive inotropic effects have been revisited in order to determine the progress made so far in drug discovery.
Негізгі сөздер
Авторлар туралы
Shadreen Fairuz
School of Science, Monash University
Email: info@benthamscience.net
Chee Ang
School of Science, Monash University
Email: info@benthamscience.net
Fatima Mraiche
Department of Pharmacology, University of Alberta
Email: info@benthamscience.net
Joo Goh
School of Science, Monash University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail., 2020, 22(8), 1342-1356. doi: 10.1002/ejhf.1858 PMID: 32483830
- Kannel, W.B. Incidence and epidemiology of heart failure. Heart Fail. Rev., 2000, 5(2), 167-173. doi: 10.1023/A:1009884820941 PMID: 16228142
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res., 2023, 118(17), 3272-3287. doi: 10.1093/cvr/cvac013 PMID: 35150240
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; Drazner, M.H.; Felker, G.M.; Filippatos, G.; Fonarow, G.C.; Fiuzat, M.; Gomez-Mesa, J.E.; Heidenreich, P.; Imamura, T.; Januzzi, J.; Jankowska, E.A.; Khazanie, P.; Kinugawa, K.; Lam, C.S.P.; Matsue, Y.; Metra, M.; Ohtani, T.; Francesco Piepoli, M.; Ponikowski, P.; Rosano, G.M.C.; Sakata, Y.; SeferoviĆ, P.; Starling, R.C.; Teerlink, J.R.; Vardeny, O.; Yamamoto, K.; Yancy, C.; Zhang, J.; Zieroth, S. Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure. J. Card. Fail., 2021, 27(4), 387-413. doi: 10.1016/j.cardfail.2021.01.022 PMID: 33663906
- Francis, G.S.; Tang, W.H. Pathophysiology of congestive heart failure. Rev. Cardiovasc. Med., 2003, 4(S2)(Suppl. 2), S14-S20. PMID: 12776009
- Link, M.G.; Yan, G.X.; Kowey, P.R. Evaluation of toxicity for heart failure therapeutics: studying effects on the QT interval. Circ. Heart Fail., 2010, 3(4), 547-555. doi: 10.1161/CIRCHEARTFAILURE.109.917781 PMID: 20647490
- Malik, A.; Brito, D.; Vaqar, S.; Chhabra, L. Congestive heart failure. Stat Pearls; Stat Pearls Publishing, 2022.
- Kosaraju, A.; Goyal, A.; Grigorova, Y.; Makaryus, A.N. Left ventricular ejection fraction. Stat Pearls; Stat Pearls Publishing. 2017.
- Francis, G.S.; Bartos, J.A.; Adatya, S. Inotropes. J. Am. Coll. Cardiol., 2014, 63(20), 2069-2078. doi: 10.1016/j.jacc.2014.01.016 PMID: 24530672
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; Crespo-Leiro, M.G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A.W.; Jaarsma, T.; Jankowska, E.A.; Lainscak, M.; Lam, C.S.P.; Lyon, A.R.; McMurray, J.J.V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G.M.C.; Ruschitzka, F.; Kathrine Skibelund, A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail., 2022, 24(1), 4-131. doi: 10.1002/ejhf.2333 PMID: 35083827
- Tariq, S.; Aronow, W. Use of inotropic agents in treatment of systolic heart failure. Int. J. Mol. Sci., 2015, 16(12), 29060-29068. doi: 10.3390/ijms161226147 PMID: 26690127
- Pinnell, J.; Turner, S.; Howell, S. Cardiac muscle physiology. Contin. Educ. Anaesth. Crit. Care Pain, 2007, 7(3), 85-88. doi: 10.1093/bjaceaccp/mkm013
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and excitation-contraction coupling in the heart. Circ. Res., 2017, 121(2), 181-195. doi: 10.1161/CIRCRESAHA.117.310230 PMID: 28684623
- Barry, S.P.; Townsend, P.A. What causes a broken heart--molecular insights into heart failure. Int. Rev. Cell Mol. Biol., 2010, 284, 113-179. doi: 10.1016/S1937-6448(10)84003-1 PMID: 20875630
- Ziff, O.J.; Kotecha, D. Digoxin: The good and the bad. Trends Cardiovasc. Med., 2016, 26(7), 585-595. doi: 10.1016/j.tcm.2016.03.011 PMID: 27156593
- Ahmad, T.; Miller, P.E.; McCullough, M.; Desai, N.R.; Riello, R.; Psotka, M.; Böhm, M.; Allen, L.A.; Teerlink, J.R.; Rosano, G.M.C.; Lindenfeld, J. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur. J. Heart Fail., 2019, 21(9), 1064-1078. doi: 10.1002/ejhf.1557 PMID: 31407860
- Colucci, W.S.; Wright, R.F.; Braunwald, E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 1. N. Engl. J. Med., 1986, 314(5), 290-299. doi: 10.1056/NEJM198601303140506 PMID: 2867470
- Nieminen, M.S.; Fruhwald, S.; Heunks, L.M.; Suominen, P.K.; Gordon, A.C.; Kivikko, M.; Pollesello, P. Levosimendan: current data, clinical use and future development. Heart Lung Vessel., 2013, 5(4), 227-245. PMID: 24364017
- Morth, J.P.; Pedersen, B.P.; Toustrup-Jensen, M.S.; Sørensen, T.L.M.; Petersen, J.; Andersen, J.P.; Vilsen, B.; Nissen, P. Crystal structure of the sodiumpotassium pump. Nature, 2007, 450(7172), 1043-1049. doi: 10.1038/nature06419 PMID: 18075585
- Fuller, W.; Tulloch, L.B.; Shattock, M.J.; Calaghan, S.C.; Howie, J.; Wypijewski, K.J. Regulation of the cardiac sodium pump. Cell. Mol. Life Sci., 2013, 70(8), 1357-1380. doi: 10.1007/s00018-012-1134-y PMID: 22955490
- Wasserstrom, J.A.; Aistrup, G.L. Digitalis: new actions for an old drug. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(5), H1781-H1793. doi: 10.1152/ajpheart.00707.2004 PMID: 16219807
- Askari, A. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect., 2019, 7(4), e00505. doi: 10.1002/prp2.505 PMID: 31360524
- Habeck, M.; Haviv, H.; Katz, A.; Kapri-Pardes, E.; Ayciriex, S.; Shevchenko, A.; Ogawa, H.; Toyoshima, C.; Karlish, S.J.D. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites. J. Biol. Chem., 2015, 290(8), 4829-4842. doi: 10.1074/jbc.M114.611384 PMID: 25533463
- El-Seedi, H.R.; Khalifa, S.A.M.; Taher, E.A.; Farag, M.A.; Saeed, A.; Gamal, M.; Hegazy, M.E.F.; Youssef, D.; Musharraf, S.G.; Alajlani, M.M.; Xiao, J.; Efferth, T. Cardenolides: Insights from chemical structure and pharmacological utility. Pharmacol. Res., 2019, 141, 123-175. doi: 10.1016/j.phrs.2018.12.015 PMID: 30579976
- Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris), 2021, 82(3-4), 193-197.
- Najafi, A.; Sequeira, V.; Kuster, D.W.D.; van der Velden, J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur. J. Clin. Invest., 2016, 46(4), 362-374. doi: 10.1111/eci.12598 PMID: 26842371
- Ciccarelli, M.; Sorriento, D.; Coscioni, E.; Iaccarino, G.; Santulli, G. Chapter 11 - Adrenergic receptors. Endocrinology of the Heart in Health and Disease. 2017, 285-315.
- Arrigo, M.; Mebazaa, A. Understanding the differences among inotropes. Intensive Care Med., 2015, 41(5), 912-915. doi: 10.1007/s00134-015-3659-7 PMID: 25605474
- Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; Zhang, L.; Leroy, J.; Leblais, V.; Fischmeister, R.; Vandecasteele, G. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Arch. Cardiovasc. Dis., 2016, 109(6-7), 431-443. doi: 10.1016/j.acvd.2016.02.004 PMID: 27184830
- Kim, G.E.; Kass, D.A. Cardiac phosphodiesterases and their modulation for treating heart disease. Handb. Exp. Pharmacol., 2016, 243, 249-269. doi: 10.1007/164_2016_82 PMID: 27787716
- Preedy, M.E.J. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc. Drugs Ther., 2020, 34(3), 401-417. doi: 10.1007/s10557-020-06959-1 PMID: 32172427
- Mayhew, D.J.; Palmer, K. Inotropes. Anaesth. Intensive Care Med., 2015, 16(10), 508-512. doi: 10.1016/j.mpaic.2015.07.006
- Gilotra, N.A.; DeVore, A.D.; Povsic, T.J.; Hays, A.G.; Hahn, V.S.; Agunbiade, T.A.; DeLong, A.; Satlin, A.; Chen, R.; Davis, R.; Kass, D.A. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure. Circ. Heart Fail., 2021, 14(9), e008236. doi: 10.1161/CIRCHEARTFAILURE.120.008236 PMID: 34461742
- Hoffman, T.M. Phosphodiesterase inhibitors. Heart Failure in the Child and Young Adult; Elsevier, 2018, pp. 517-522. doi: 10.1016/B978-0-12-802393-8.00040-5
- Kamel, R.; Leroy, J.; Vandecasteele, G.; Fischmeister, R. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat. Rev. Cardiol., 2023, 20(2), 90-108. doi: 10.1038/s41569-022-00756-z PMID: 36050457
- Movsesian, M.; Ahmad, F.; Hirsch, E. Functions of PDE3 isoforms in cardiac muscle. J. Cardiovasc. Dev. Dis., 2018, 5(1), 10. doi: 10.3390/jcdd5010010 PMID: 29415428
- Li, M.X.; Hwang, P.M. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene, 2015, 571(2), 153-166. doi: 10.1016/j.gene.2015.07.074 PMID: 26232335
- Kalyva, A.; Parthenakis, F.I.; Marketou, M.E.; Kontaraki, J.E.; Vardas, P.E. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies. J. Muscle Res. Cell Motil., 2014, 35(2), 161-178. doi: 10.1007/s10974-014-9382-0 PMID: 24744096
- Grześk, G.; Wołowiec, Ł.; Rogowicz, D.; Gilewski, W.; Kowalkowska, M.; Banach, J.; Hertmanowski, W.; Dobosiewicz, M. The importance of pharmacokinetics, pharmacodynamic and repetitive use of levosimendan. Biomed. Pharmacother., 2022, 153, 113391. doi: 10.1016/j.biopha.2022.113391 PMID: 36076524
- Gonano, L.A.; Petroff, M.V. Subcellular mechanisms underlying digitalis-induced arrhythmias: role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ., 2014, 23(12), 1118-1124. doi: 10.1016/j.hlc.2014.07.074 PMID: 25201479
- Tse, G. Mechanisms of cardiac arrhythmias. J. Arrhythm., 2016, 32(2), 75-81. doi: 10.1016/j.joa.2015.11.003 PMID: 27092186
- Zhang, J.; Simpson, P.C.; Jensen, B.C. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(2), H725-H733. doi: 10.1152/ajpheart.00621.2020 PMID: 33275531
- Belletti, A.; Castro, M.L.; Silvetti, S.; Greco, T.; Biondi-Zoccai, G.; Pasin, L.; Zangrillo, A.; Landoni, G. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br. J. Anaesth., 2015, 115(5), 656-675. doi: 10.1093/bja/aev284 PMID: 26475799
- Pollesello, P.; Papp, Z.; Papp, J.G. Calcium sensitizers: What have we learned over the last 25years? Int. J. Cardiol., 2016, 203, 543-548. doi: 10.1016/j.ijcard.2015.10.240 PMID: 26580334
- Alsulami, K.; Marston, S. Small molecules acting on myofilaments as treatments for heart and skeletal muscle diseases. Int. J. Mol. Sci., 2020, 21(24), 9599. doi: 10.3390/ijms21249599 PMID: 33339418
- Meissner, G. The structural basis of ryanodine receptor ion channel function. J. Gen. Physiol., 2017, 149(12), 1065-1089. doi: 10.1085/jgp.201711878 PMID: 29122978
- Maxwell, J.T.; Domeier, T.L.; Blatter, L.A. Dantrolene prevents arrhythmogenic Ca 2+ release in heart failure. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(4), H953-H963. doi: 10.1152/ajpheart.00936.2011 PMID: 22180651
- Fischer, T.H.; Maier, L.S.; Sossalla, S. The ryanodine receptor leak: how a tattered receptor plunges the failing heart into crisis. Heart Fail. Rev., 2013, 18(4), 475-483. doi: 10.1007/s10741-012-9339-6 PMID: 22932727
- Hasenfuss, G.; Teerlink, J.R. Cardiac inotropes: current agents and future directions. Eur. Heart J., 2011, 32(15), 1838-1845. doi: 10.1093/eurheartj/ehr026 PMID: 21388993
- Marx, S.O.; Marks, A.R. Dysfunctional ryanodine receptors in the heart: New insights into complex cardiovascular diseases. J. Mol. Cell. Cardiol., 2013, 58, 225-231. doi: 10.1016/j.yjmcc.2013.03.005 PMID: 23507255
- Petzhold, D.; Lossie, J.; Keller, S.; Werner, S.; Haase, H.; Morano, I. Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity. Cardiovasc. Res., 2011, 90(3), 513-520. doi: 10.1093/cvr/cvr026 PMID: 21262909
- Planelles-Herrero, V.J.; Hartman, J.J.; Robert-Paganin, J.; Malik, F.I.; Houdusse, A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun., 2017, 8(1), 190. doi: 10.1038/s41467-017-00176-5 PMID: 28775348
- Kaplinsky, E.; Mallarkey, G. Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs Context, 2018, 7, 1-10. doi: 10.7573/dic.212518 PMID: 29707029
- Metra, M.; Pagnesi, M.; Claggett, B.L.; Díaz, R.; Felker, G.M.; McMurray, J.J.V.; Solomon, S.D.; Bonderman, D.; Fang, J.C.; Fonseca, C.; Goncalvesova, E.; Howlett, J.G.; Li, J.; OMeara, E.; Miao, Z.M.; Abbasi, S.A.; Heitner, S.B.; Kupfer, S.; Malik, F.I.; Teerlink, J.R. Effects of omecamtiv mecarbil in heart failure with reduced ejection fraction according to blood pressure: the GALACTIC-HF trial. Eur. Heart J., 2022, 43(48), 5006-5016. doi: 10.1093/eurheartj/ehac293 PMID: 35675469
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; Böhm, M.; Bonderman, D.; Cleland, J.G.F.; Corbalan, R.; Crespo-Leiro, M.G.; Dahlström, U.; Echeverria, L.E.; Fang, J.C.; Filippatos, G.; Fonseca, C.; Goncalvesova, E.; Goudev, A.R.; Howlett, J.G.; Lanfear, D.E.; Li, J.; Lund, M.; Macdonald, P.; Mareev, V.; Momomura, S.; OMeara, E.; Parkhomenko, A.; Ponikowski, P.; Ramires, F.J.A.; Serpytis, P.; Sliwa, K.; Spinar, J.; Suter, T.M.; Tomcsanyi, J.; Vandekerckhove, H.; Vinereanu, D.; Voors, A.A.; Yilmaz, M.B.; Zannad, F.; Sharpsten, L.; Legg, J.C.; Varin, C.; Honarpour, N.; Abbasi, S.A.; Malik, F.I.; Kurtz, C.E. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med., 2021, 384(2), 105-116. doi: 10.1056/NEJMoa2025797 PMID: 33185990
- Sikkel, M.B.; Hayward, C.; MacLeod, K.T.; Harding, S.E.; Lyon, A.R. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br. J. Pharmacol., 2014, 171(1), 38-54. doi: 10.1111/bph.12472 PMID: 24138023
- Zhihao, L.; Jingyu, N.; Lan, L.; Michael, S.; Rui, G.; Xiyun, B.; Xiaozhi, L.; Guanwei, F. SERCA2a: a key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev., 2020, 25(3), 523-535. doi: 10.1007/s10741-019-09873-3 PMID: 31701344
- Park, W.J.; Oh, J.G. SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep., 2013, 46(5), 237-243. doi: 10.5483/BMBRep.2013.46.5.077 PMID: 23710633
- Korpela, H.; Järveläinen, N.; Siimes, S.; Lampela, J.; Airaksinen, J.; Valli, K.; Turunen, M.; Pajula, J.; Nurro, J.; Ylä-Herttuala, S. Gene therapy for ischaemic heart disease and heart failure. J. Intern. Med., 2021, 290(3), 567-582. doi: 10.1111/joim.13308 PMID: 34033164
- Arcaro, A.; Lembo, G.; Tocchetti, C.G. Nitroxyl (HNO) for treatment of acute heart failure. Curr. Heart Fail. Rep., 2014, 11(3), 227-235. doi: 10.1007/s11897-014-0210-z PMID: 24980211
- Maack, C.; Eschenhagen, T.; Hamdani, N.; Heinzel, F.R.; Lyon, A.R.; Manstein, D.J.; Metzger, J.; Papp, Z.; Tocchetti, C.G.; Yilmaz, M.B.; Anker, S.D.; Balligand, J.L.; Bauersachs, J.; Brutsaert, D.; Carrier, L.; Chlopicki, S.; Cleland, J.G.; de Boer, R.A.; Dietl, A.; Fischmeister, R.; Harjola, V.P.; Heymans, S.; Hilfiker-Kleiner, D.; Holzmeister, J.; de Keulenaer, G.; Limongelli, G.; Linke, W.A.; Lund, L.H.; Masip, J.; Metra, M.; Mueller, C.; Pieske, B.; Ponikowski, P.; Ristić, A.; Ruschitzka, F.; Seferović, P.M.; Skouri, H.; Zimmermann, W.H.; Mebazaa, A. Treatments targeting inotropy. Eur. Heart J., 2019, 40(44), 3626-3644. doi: 10.1093/eurheartj/ehy600 PMID: 30295807
- Ferrandi, M.; Barassi, P.; Tadini-Buoninsegni, F.; Bartolommei, G.; Molinari, I.; Tripodi, M.G.; Reina, C.; Moncelli, M.R.; Bianchi, G.; Ferrari, P. Istaroxime stimulates SERCA2A and accelerates calcium cycling in heart failure by relieving phospholamban inhibition. Br. J. Pharmacol., 2013, 169(8), 1849-1861. doi: 10.1111/bph.12278 PMID: 23763364
- Avvisato, R.; Jankauskas, S.S.; Santulli, G. Istaroxime and beyond: New therapeutic strategies to specifically activate SERCA and treat heart failure. J. Pharmacol. Exp. Ther., 2023, 384(1), 227-230. doi: 10.1124/jpet.122.001446 PMID: 36581352
- Figueroa-Valverde, L.; Diaz-Cedillo, F.; Lopez-Ramos, M.; Garcia-Cervera, E.; Quijano, K.; Cordoba, J. Changes induced by estradiol-ethylenediamine derivative on perfusion pressure and coronary resistance in isolated rat heart: L-type calcium channel. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(1), 27-32. doi: 10.5507/bp.2011.018 PMID: 21475374
- Templeton, J.F.; Kumar, V.P.S.; Cote, D.; Bose, D.; Elliott, D.; Kim, R.S.; LaBella, F.S. Progesterone derivatives that bind to the digitalis receptor: synthesis of 14.beta.-hydroxyprogesterone: a novel steroid with positive inotropic activity. J. Med. Chem., 1987, 30(8), 1502-1505. doi: 10.1021/jm00391a038 PMID: 3612692
- López-Ramos, M.; Figueroa-Valverde, L.; Herrera-Meza, S.; Rosas-Nexticapa, M.; Díaz-Cedillo, F.; García-Cervera, E.; Pool-Gómez, E.; Cahuich-Carrillo, R. Design and synthesis of a new steroid-macrocyclic derivative with biological activity. J. Chem. Biol., 2017, 10(2), 69-84. doi: 10.1007/s12154-017-0165-0 PMID: 28405241
- Lauro, F.V.; Francisco, D.C.; Elodia, G.C.; Eduardo, P.G.; Marcela, R.N.; Lenin, H.H.; Betty, S.A. Design and synthesis of new dihydrotestosterone derivative with positive inotropic activity. Steroids, 2015, 95, 39-50. doi: 10.1016/j.steroids.2014.12.026 PMID: 25578737
- Rocchetti, M.; Besana, A.; Mostacciuolo, G.; Micheletti, R.; Ferrari, P.; Sarkozi, S.; Szegedi, C.; Jona, I.; Zaza, A. Modulation of sarcoplasmic reticulum function by Na+/K+ pump inhibitors with different toxicity: digoxin and PST2744 (E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride. J. Pharmacol. Exp. Ther., 2005, 313(1), 207-215. doi: 10.1124/jpet.104.077933 PMID: 15576469
- Metra, M.; Chioncel, O.; Cotter, G.; Davison, B.; Filippatos, G.; Mebazaa, A.; Novosadova, M.; Ponikowski, P.; Simmons, P.; Soffer, J.; Simonson, S. Safety and efficacy of istaroxime in patients with acute heart failure-related pre-cardiogenic shock a multicentre, randomized, double-blind, placebo-controlled, parallel group study ( SEISMIC ). Eur. J. Heart Fail., 2022, 24(10), 1967-1977. doi: 10.1002/ejhf.2629 PMID: 35867804
- Arici, M.; Ferrandi, M.; Barassi, P.; Hsu, S.C.; Torre, E.; Luraghi, A.; Ronchi, C.; Chang, G.J.; Peri, F.; Ferrari, P.; Bianchi, G.; Rocchetti, M.; Zaza, A. Istaroxime metabolite PST3093 selectively stimulates SERCA2a and reverses disease-induced changes in cardiac function. J. Pharmacol. Exp. Ther., 2023, 384(1), 231-244. doi: 10.1124/jpet.122.001335 PMID: 36153005
- Luraghi, A.; Ferrandi, M.; Barassi, P.; Arici, M.; Hsu, S.C.; Torre, E.; Ronchi, C.; Romerio, A.; Chang, G.J.; Ferrari, P.; Bianchi, G.; Zaza, A.; Rocchetti, M.; Peri, F. Highly selective SERCA2a activators: Preclinical development of a congeneric group of first-in-class drug leads against heart failure. J. Med. Chem., 2022, 65(10), 7324-7333. doi: 10.1021/acs.jmedchem.2c00347 PMID: 35580334
- Meng, Q.; Yau, L.F.; Lu, J.G.; Wu, Z.Z.; Zhang, B.X.; Wang, J.R.; Jiang, Z.H. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin. J. Ethnopharmacol., 2016, 187, 74-82. doi: 10.1016/j.jep.2016.03.062 PMID: 27063985
- Liang, G.; Chung, T.; Guo, J.; Zhang, R.; Xü, W.; Tzen, J.T.C.; Jiang, R. Novel cinobufagin oxime ether derivatives as potential Na+/K+-ATPase inhibitors: Synthesis, biological screening and molecular docking. Chem. Res. Chin. Univ., 2017, 33(3), 378-383. doi: 10.1007/s40242-017-6487-1
- Tang, H.J.; Ruan, L.J.; Tian, H.Y.; Liang, G.P.; Ye, W.C.; Hughes, E.; Esmann, M.; Fedosova, N.U.; Chung, T.Y.; Tzen, J.T.C.; Jiang, R.W.; Middleton, D.A. Novel stereoselective bufadienolides reveal new insights into the requirements for Na+, K+-ATPase inhibition by cardiotonic steroids. Sci. Rep., 2016, 6(1), 29155. doi: 10.1038/srep29155 PMID: 27377465
- Wink, M.; Roberts, M.F. Alkaloids: biochemistry, ecology, and medicinal applications; Plenum Press, 1998.
- Wei, J.W.; Liao, J.F.; Chuang, C.Y.; Chen, C.F.; Han, P.W. Cardiovascular effects of matrine isolated from the Chinese herb Shan-dou-gen. Proc. Natl. Sci. Counc. Repub. China B, 1985, 9(3), 215-219. PMID: 4070509
- Boido, V.; Ercoli, M.; Tonelli, M.; Novelli, F.; Tasso, B.; Sparatore, F.; Cichero, E.; Fossa, P.; Dorigo, P.; Froldi, G. New arylsparteine derivatives as positive inotropic drugs. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 588-599. doi: 10.1080/14756366.2017.1279156 PMID: 28133984
- Li, W. C. Application of 2,5 -dihydroxymethyl-3,6-dimethyl pyrazine and its derivates in pharmacy. US8158630B2, 2012.
- Liu, Z.; Li, W.; Wen, H.M.; Bian, H.M.; Zhang, J.; Chen, L.; Chen, L.; Yang, K.D. Synthesis, biological evaluation, and pharmacokinetic study of novel liguzinediol prodrugs. Molecules, 2013, 18(4), 4561-4572. doi: 10.3390/molecules18044561 PMID: 23599014
- Zhang, J.; Li, W.; Wen, H.M.; Zhu, H.H.; Wang, T.L.; Cheng, D.; Yang, K.D.; Chen, Y.Q. Synthesis and biological evaluation of liguzinediol mono- and dual ester prodrugs as promising inotropic agents. Molecules, 2014, 19(11), 18057-18072. doi: 10.3390/molecules191118057 PMID: 25379643
- Wu, Y.; Sun, L.P.; Ma, L.X.; Che, J.; Song, M.X.; Cui, X.; Piao, H.R. Synthesis and biological evaluation of 1,2,4triazolo3,4-aphthalazine and tetrazolo5,1-aphthalazine derivatives bearing substituted benzylpiperazine moieties as positive inotropic agents. Chem. Biol. Drug Des., 2013, 81(5), 591-599. doi: 10.1111/cbdd.12101 PMID: 23279930
- Ma, L.X.; Cui, B.R.; Wu, Y.; Liu, J.C.; Cui, X.; Liu, L.P.; Piao, H.R. Synthesis and positive inotropic evaluation of 1,2,4triazolo3,4-aphthalazine and tetrazolo5,1-aphthalazine derivatives bearing substituted piperazine moieties. Bioorg. Med. Chem. Lett., 2014, 24(7), 1737-1741. doi: 10.1016/j.bmcl.2014.02.040 PMID: 24636107
- Liu, X.K.; Ma, L.X.; Wei, Z.Y.; Cui, X.; Zhan, S.; Yin, X.M.; Piao, H.R. Synthesis and positive inotropic activity of 1,2,4triazolo4, 3-a quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties. Molecules, 2017, 22(2), 273. doi: 10.3390/molecules22020273 PMID: 28208674
- Humphrey, J.M.; Movsesian, M.; am Ende, C.W.; Becker, S.L.; Chappie, T.A.; Jenkinson, S.; Liras, J.L.; Liras, S.; Orozco, C.; Pandit, J.; Vajdos, F.F.; Vandeput, F.; Yang, E.; Menniti, F.S. Discovery of potent and selective periphery-restricted quinazoline inhibitors of the cyclic nucleotide phosphodiesterase PDE1. J. Med. Chem., 2018, 61(10), 4635-4640. doi: 10.1021/acs.jmedchem.8b00374 PMID: 29718668
- Hashimoto, T.; Kim, G.E.; Tunin, R.S.; Adesiyun, T.; Hsu, S.; Nakagawa, R.; Zhu, G.; OBrien, J.J.; Hendrick, J.P.; Davis, R.E.; Yao, W.; Beard, D.; Hoxie, H.R.; Wennogle, L.P.; Lee, D.I.; Kass, D.A. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition: translational study in the dog and rabbit. Circulation, 2018, 138(18), 1974-1987. doi: 10.1161/CIRCULATIONAHA.117.030490 PMID: 30030415
- Muller, G.K.; Song, J.; Jani, V.; Wu, Y.; Liu, T.; Jeffreys, W.P.D.; ORourke, B.; Anderson, M.E.; Kass, D.A. PDE1 inhibition modulates Cav1. 2 channel to stimulate cardiomyocyte contraction. Circ. Res., 2021, 129(9), 872-886. doi: 10.1161/CIRCRESAHA.121.319828 PMID: 34521216
- Humphrey, J.M.; Yang, E.; am Ende, C.W.; Arnold, E.P.; Head, J.L.; Jenkinson, S.; Lebel, L.A.; Liras, S.; Pandit, J.; Samas, B.; Vajdos, F.; Simons, S.P.; Evdokimov, A.; Mansoura, M.; Menniti, F.S. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MedChemComm, 2014, 5(9), 1290-1296. doi: 10.1039/C4MD00113C
- Cleland, J.G.F.; Teerlink, J.R.; Senior, R.; Nifontov, E.M.; Mc Murray, J.J.V.; Lang, C.C.; Tsyrlin, V.A.; Greenberg, B.H.; Mayet, J.; Francis, D.P.; Shaburishvili, T.; Monaghan, M.; Saltzberg, M.; Neyses, L.; Wasserman, S.M.; Lee, J.H.; Saikali, K.G.; Clarke, C.P.; Goldman, J.H.; Wolff, A.A.; Malik, F.I. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet, 2011, 378(9792), 676-683. doi: 10.1016/S0140-6736(11)61126-4 PMID: 21856481
- Manickam, M.; Jalani, H.B.; Pillaiyar, T.; Sharma, N.; Boggu, P.R.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Jung, S.H. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure. Eur. J. Med. Chem., 2017, 134, 379-391. doi: 10.1016/j.ejmech.2017.04.005 PMID: 28432943
- Manickam, M.; Jalani, H.B.; Pillaiyar, T.; Boggu, P.R.; Sharma, N.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Son, M.J.; Woo, S.H.; Jung, S.H. Design and synthesis of sulfonamidophenylethylureas as novel cardiac myosin activator. Eur. J. Med. Chem., 2018, 143, 1869-1887. doi: 10.1016/j.ejmech.2017.10.077 PMID: 29224951
- Manickam, M.; Pillaiyar, T.; Namasivayam, V.; Boggu, P.R.; Sharma, N.; Jalani, H.B.; Venkateswararao, E.; Lee, Y.J.; Jeon, E.S.; Son, M.J.; Woo, S.H.; Jung, S.H. Design and synthesis of sulfonamidophenylethylamides as novel cardiac myosin activator. Bioorg. Med. Chem., 2019, 27(18), 4110-4123. doi: 10.1016/j.bmc.2019.07.041 PMID: 31378598
Қосымша файлдар
