Self-healing in construction materials science: basic terms and implementation methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Statistic data on changes in the number of publications mentioning the studied terms are shown. The analysis of approaches to the formulation of a conceptual framework for describing the processes of the construction materials properties restoring including thermoplastic binders is carried out. The absence of unified terminology in the Russian scientific community has been established. It makes objective evaluating research results in this scientific field difficult. Terms and definitions are proposed to describe self-healing, self-healability, components resource potential, encapsulated modifier, reducing agent and defect neutralization. It is shown that the system of proposed terms has a fundamental basis – thermodynamic interpretation.

Full Text

Restricted Access

About the authors

S. S. Inozemtsev

National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: inozemtsevss@mail.ru

Candidate of Sciences (Engineering)

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

E. V. Korolev

Saint Petersburg State University of Architecture and Civil Engineering

Email: korolev@nocnt.ru

Doctor of Sciences (Engineering)

Russian Federation, 4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005

A. S. Inozemtsev

National Research Moscow State University of Civil Engineering

Email: inozemcevss@mgsu.ru

Candidate of Sciences (Engineering)

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

H. T. Le

National Research Moscow State University of Civil Engineering

Email: letuan1511@yandex.ru

Candidate of Sciences (Engineering)

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

E. V. Matyushin

National Research Moscow State University of Civil Engineering

Email: matyushin010@gmail.com

Engineer

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

References

  1. Иноземцев С.С., До Т.Ч. Состояние и перспективы развития технологии самовосстанавливающихся дорожных материалов // Вестник МГСУ. 2020. Т. 15. № 10. С. 1407–1424. EDN: NYVEIW. https://doi.org/10.22227/1997-0935.2020.10.1407-1424. Inozemtsev S.S., Do T.Ch. Status and development prospects of self-healing road materials technology. Vestnik of MGSU. 2020. Vol. 15. No. 10, pp. 1407–1424. EDN: NYVEIW. (In Russian). https://doi.org/10.22227/1997-0935.2020.10.1407-1424
  2. Ghosh S.K. Self-healing materials: fundamentals, design strategies, and applications. Chapter 1. 2008, pp. 1–28. https://doi.org/10.1002/9783527625376.ch1
  3. Sharma T., Banerjee A., Nanthagopalan P. Probing the abyss: bacteria-based self-healing in cementitious construction materials – a review. Construction and Building Materials. 2024. Vol. 455. 139054. EDN: RKOBVZ. https://doi.org/10.1016/j.conbuildmat.2024.139054
  4. Chen Ch., Shen T., Yang J., Cao W., Wei J., Li W. Room-temperature intrinsic self-healing materials: a review. Chemical Engineering Journal. 2024. Vol. 498. 155158. EDN: CWVSXS. https://doi.org/10.1016/j.cej.2024.155158
  5. Целуйко С.С., Красавина Н.П., Семенов Д.А. Регенерация тканей. Благовещенск: Амурская государственная медицинская академия, 2016. 136 с. Tseluiko S.S., Krasavina N.P., Semenov D.A. Regeneratsiya tkaney [Tissue regeneration]. Blagoveshchensk. 2016. 136 p.
  6. Лесовик В.С., Фомина Е.В. Новая парадигма проектирования строительных композитов для защиты среды обитания человека // Вестник МГСУ. 2019. Т. 14. № 10. С. 1241–1257. EDN: NPNPBT https://doi.org/10.22227/1997-0935.2019.10.1241-1257. Lesovik V.S., Fomina E.V. New paradigm of designing building composites for protecting the human environment. Vestnik MGSU. 2019. Vol. 14. No. 10, pp. 1241–1257. (In Russian). EDN: NPNPBT. https://doi.org/10.22227/1997-0935.2019.10.1241-1257
  7. Королев Е.В., Беленцов Ю.А. Применение теории информации в решении задач строительного материаловедения // Региональная архитектура и строительство. 2023. № 3 (56). С. 13–28. EDN: NDKOJM. https://doi.org/10.54734/20722958_2023_3_13. Korolev E.V., Belentsov Yu.A. Application of information theory in solving problems of construction materials science. Regional’naya Arkhitektura i Stroitel’stvo. 2023. No. 3 (56), pp. 13–28. (In Russian). EDN: NDKOJM. https://doi.org/10.54734/20722958_2023_3_13
  8. Иноземцев С.С., Королев Е.В. Структурно-чувствительные свойства самовосстанавливающегося асфальтобетона // Строительные материалы. 2024. № 12. С. 49–56. EDN: YDANRQ. https://doi.org/10.31659/0585-430X-2024-831-12-49-56. Inozemtcev S.S., Korolev E.V. Structural-sensitive properties of self-healing asphalt concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 12, pp. 49–56. EDN: YDANRQ. (In Russian). https://doi.org/10.31659/0585-430X-2024-831-12-49-56
  9. Van der Zwaag S. Self healing materials: an alternative approach to 20 centuries of materials science. Netherlands: Springer. 2007. https://doi.org/10.1007/978-1-4020-6250-6
  10. Leegwater G., Tabokovic A., Baglieri O., Hammoum F., Baaj H. Terms and definitions on crack-healing and restoration of mechanical properties in bituminous materials. Proceedings of the RILEM International Symposium on Bituminous Materials. 2022. Vol. 27, pp. 47–53. https://doi.org/10.1007/978-3-030-46455-4_6
  11. Баженов Ю.М., Ерофеев В.Т., Салман А.Д.С.Д., Смирнов В.Ф., Фомичев В.Т. Технология самовосстановления железобетонных конструкций с помощью микроорганизмов // Русский инженер. 2018. № 4 (61). С. 46–48. EDN: YOOLYD. Bazhenov Yu.M., Erofeev V.T., Salman A.D.S.D., Smirnov V.F., Fomichev V.T. Technology of self-healing of reinforced concrete structures using microorganisms. Russkiy Inzhener. 2018. No. 4 (61), pp. 46–48. (In Russian). EDN: YOOLYD
  12. Яремчук М.В., Уланская А.Е., Присяжнюк А.П. Методические аспекты нового способа самовосстановления искусственного камня // Академическая публицистика. 2022. № 5–1. С. 41–48. EDN: WNGGHQ. Yaremchuk M.V., Ulanskaya A.E., Prisyazhnyuk A.P. Methodological aspects of a new method of self-healing of artificial stone. Akademicheskaya publitsistika. 2022. No. 5–1, pp. 41–48. (In Russian). EDN: WNGGHQ
  13. Артамонова О.В., Куликова О.Я. Механизмы самовосстановления современных композитов // Химия, физика и механика материалов. 2024. № 2 (41). С. 40–58. EDN: PBXMKV. Artamonova O.V., Kulikova O.Ya. Self-healing mechanisms of modern composites. Khimiya, fizika i mekhanika materialov. 2024. No. 2 (41), pp. 40–58. (In Russian). EDN: PBXMKV
  14. Ситников Н.Н., Хабибуллина И.А., Мащенко В.И. Самовосстанавливающиеся материалы: обзор механизмов самовосстановления и их применений // Видеонаука. 2018. № 1 (9). С. 1. EDN: YUGMZE. Sitnikov N.N., Khabibullina I.A., Mashchenko V.I. Self-healing materials: a review of self-healing mechanisms and their applications. Videonauka. 2018. No. 1 (9). P. 1. (In Russian). EDN: YUGMZE
  15. Бадмаев М.А., Квасников М.Ю., Федякова Н.В., Дараселия К.К., Кузовлева Е.А. Самовосстанавливающиеся лакокрасочные покрытия // Успехи в химии и химической технологии. 2018. Т. 32. № 6 (202). С. 17–19. EDN: YPFVJJ. Badmaev M.A., Kvasnikov M.Yu., Fedyakova N.V., Daraselia K.K., Kuzovleva E.A. Self-healing paint and varnish coatings. Uspekhi v Khimii i Khimicheskoy Tekhnologii. 2018. Vol. 32. No. 6 (202), pp. 17–19. (In Russian). EDN: YPFVJJ
  16. Cordier P., Tournilhac F., Soulie-Ziakovic C., Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008. Vol. 451, pp. 977–980. https://doi.org/10.1038/nature06669
  17. Chen X.X., Dam M.A., Ono K., Mal A., Shen H.B., Nutt S.R., Sheran K., Wudl F. A thermally Re-mendable cross-linked polymeric material. Science. 2002. Vol. 295, pp. 1698–1702. EDN: DRQYTP. https://doi.org/10.1126/science.1065879
  18. Amamoto Y., Otsuka H., Takahara A., Matyjaszewski K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Advanced Materials. 2012. Vol. 24, pp. 3975–3980. https://doi.org/10.1002/adma.201201928
  19. Taynton P., Ni H., Zhu C., Yu K., Loob S., Jin Y., Qi H.J., Zhang W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Advanced Materials. 2016. Vol. 28, pp. 2904–2909. https://doi.org/10.1002/adma.201505245
  20. Jahandideh A., Moini N., Kabiri K., Zohuriaan-Mehr M.J. A green strategy to endow superabsorbents with stretchability and self-healability. Chemical Engineering Journal. 2019. Vol. 370, pp. 274–286. https://doi.org/10.1016/j.cej.2019.03.149
  21. Zemskov S.V., Jonkers H.M., Vermolen F.J. A mathematical model for bacterial self-healing of cracks in concrete. Journal of Intelligent Material Systems and Structures. 2014. Vol. 25, pp. 4–12. https://doi.org/10.1177/1045389X12437887
  22. Kim Y.H., Wool R.P. A theory of healing at a polymer-polymer interface. Macromolecules. 1983. Vol. 16. Iss. 7, pp. 1115–1120. https://doi.org/10.1021/MA00241A013
  23. Wool R.P., O’Connor K. A theory crack healing in polymers. Journal of Applied Physics. 1981. Vol. 52. 5953. https://doi.org/10.1063/1.328526

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of publications mentioning the terms under study in total (a) and in the field “Construction. Architecture” (b) (according to data from [7] from January 2025)

Download (130KB)
3. Fig. 2. Scheme of processes occurring in asphalt concrete [10]

Download (166KB)
4. Fig. 3. Life cycle of building materials

Download (110KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"