Mechanism of concrete frost destruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Theoretical substantiation and experimental confirmation of a low-modulus inclusions (particles) role, including closed air entrainment pores while concrete frost destruction and increase of its frost resistance is carried out. It is shown that the low-modulus inclusions evenly distributed in the concrete structure are a brake for the cracks formed during pore water freezing growth, thereby increasing the frost resistance of concrete. It has been theoretically proved that the proposed hypotheses describe the possible pressure formation and development processes during intrapore water freezing and are not a mechanism of the frost destruction. The essence of the frost destruction mechanism is the process of the cracks formation, accumulation and growth after volumetric stress field formation in the concrete structure, which average value exceeds the structure tensile strength. T.S. Powers hypothesis currently recognized as the main hypothesis cannot explain many of the theoretical and practical facts available accompanying the concrete frost destruction. The essence of the concrete frost destruction mechanism is revealed and described based on the modern science positions - fracture mechanics.

Full Text

Restricted Access

About the authors

А. I. Panchenko

National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: alex250354@gmail.com

Doctor of Sciences

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

A. O. Murashov

National Research Moscow State University of Civil Engineering

Email: alex250354@gmail.com

Postgraduate Student

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

References

  1. Alekseev S.N., Ivanov F.M., Modry S., Shissl’ P. Dolgovechnost’ zhelezobetona v agressivnykh sredakh [Durability of reinforced concrete in aggressive environments]. Moscow: Stroyizdat. 1990. 316 p.
  2. Shtark I., Vikht V. Dolgovechnost’ betona [Durability of concrete]. Kiev: Oranta. 2004. 293 p.
  3. Falikman V.R., Stepanova V.F., Chekhnii G.V. Concretes and technologies for the construction of buildings and structures in the Arctic zone. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2021. No. 2, pp. 17–23. (In Russian). EDN: EYDKGE. https://doi.org/10.33622/0869-7019.2021.02.17-23
  4. Bazhenov Yu.M. Ways of development of building materials science: new concretes. Tekhnologii Betonov. 2012. No. 3–4, pp. 39–42. (In Russian). EDN: SXLIVD
  5. Rozental’ N.K., Chekhnii G.V. Morozostoikost’ betona. Obzor [Frost resistance of concrete. Review]. Moscow: «NITs «Stroitel’stvo», 2023. 156 p.
  6. Powers T.C. A working hypothesis for further studies of frost resistance of concrete. Journal of the American Concrete Institute. 1945. No. 16. Vol. 16 (4), pp. 245–272.
  7. Chernyshov E.M. Frost destruction of concrete. Part 1. Mechanism, criteria conditions of management. Stroitel’nye Materialy [Construction Materials]. 2017. No. 9, pp. 40–46. (In Russian). EDN: ZJAMXZ
  8. Piradov K.A., Guzeev V.A. Physico-mechanical foundations of durability of concrete and reinforced concrete. Beton i Zhelezobeton.1998. No. 1, pp. 25–27. (In Russian).
  9. Collins A.R. The destruction of concrete by frost. Jorn. Inst. Civ. Engieneer. 1944. Vol. 23. No. 1, pp. 29–41.
  10. Taber S. Mechanics of frost heaving. Journal of Geology. 1930. Vol. 38. No. 4, pp. 303–317.
  11. Krasil’nikov K.G., Tarasov A.F. Water-ice phase transitions in the pores of cement stone and concrete. Physico-chemical Studies of Concretes and their Components. NIIZhB papers. Moscow. 1975, pp. 15–22. (In Russian).
  12. Cordon A.W. Freezing and thawing of concrete, mechanisms and control. Detroit: American Concrete Institute monograph series. 1966. 99 p.
  13. Babushkin V.M. Fiziko-khimicheskie protsessy korrozii betona i zhelezobetona [Physico-chemical corrosion processes of concrete and reinforced concrete]. Moscow: Stroyizdat. 1968. 187 p.
  14. Yarmakovskii V.N., Kadiev D.Z. Physical foundations and technologies for creating concretes resistant to cryogenic (up to -163оC) technological temperatures. Collection of Scientific Papers of the Russian Academy of Natural Sciences in 2 volumes. Vol. 2. Moscow: ASV. 2021, pp. 329–339. (In Russian).
  15. Vlasov O.V., Eremeev G.G. Znachenie termouprugih napryazhenij v povyshenii dolgovechnosti stroitel’nyh konstrukcij. V kn.: Stroitel’naya Fizika [The importance of thermoelastic stresses in increasing the durability of building structures. In: Construction physics]. Moscow: Gosstroyizdat. 1961, pp. 39–48.
  16. Henk B. Betrachtung über Gefügespannung im Beton. Zement-Kalk-Gips. 1956. No. 3, pp. 111–116, 176.
  17. Powers T., Helmuth R.A. Theory of volume changes in hardened portland cement paste during freezing. Proceedings of the Thirty-Second Annual Meeting of the Highway Research Board. Washington, D.C. 1953. Vol. 32, pp. 285–297. https://onlinepubs.trb.org/Onlinepubs/hrbproceedings/32/32-019.pdf
  18. Nesvetaev G.V. Betony [Concretes]. Rostov-on-Don: Feniks. 2013. 381 p.
  19. Brykov A.S. Morozostoikost’ portlandtsementnogo betona i sposoby ee povysheniya [Frost resistance of Portland cement concrete and ways to increase it]. St. Petersburg: SPbGTI(TU). 2017. 38 p.
  20. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. Moscow: ACV, 2011. 528 p.
  21. Neville A. M., Brooks J.J. Concrete Technology. London: Pearson Education Ltd. 2010. 464 р.
  22. Slavcheva G.S. Structural factors of ensuring frost resistance of cement foam concrete. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9, pp. 53–56. (In Russian). EDN: UKLICX
  23. Trofimov B.Ya., Kramar L.Ya. Deformations and resistance of concrete during cyclic freezing. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 46–51. (In Russian). EDN: SJVXNZ
  24. Hasholt M.T. Air void structures and frost resistance: a challenge to Powers’ spacing factor. Materials and Structures. 2014. Vol. 47, No. 5, pp. 911–923. https://doi.org/10.1617/S11527-013-0102-9
  25. Pigeon M., Lachance M. critical air void spacing factors for concretes submitted to slow freeze-thaw cycles. American Concrete Institute Journal 1981. Vol. 78, pp. 282–291. https://doi.org/10.14359/6926
  26. Podval’nyi A.M. O prochnostnom kriterii dolgovechnosti betona. V kn.: Moskvin V.M., Savina Yu.A., Alexeev S.N., at al. Povyshenie stojkosti betona i zhelezobetona pri vozdejstvii agressivnyh sred [About the strength criterion of concrete durability. In: Increasing the concrete and reinforced concrete structures resistance when exposed to aggressive environments]. Moscow: Stroyizdat. 1975, pp. 69–81.
  27. Nesvetaev G.V. To assess the frost resistance of loaded concrete. Izvestiya Vysshikh Uchebnykh Zavedenii. Stroitel’stvo. 1996. No. 11, pp. 125–128.
  28. Kaprielov C.S., Sheinfel’d A.V., Kardumyan G.S. Novye modifitsirovannye betony [New modified concretes]. Moscow: Tipografiya Paradiz. 2010. 258 p.
  29. Kreisel R., French C., Snyder M. Freeze-Thaw Durability of High-Strength Concrete. Report no. MnDOT 1998-10. Minneapolis: University of Minnesota.1998.
  30. Panchenko A.I., Kharchenko I.Ya., Vasil’ev S.V. Durability of concretes with compensated chemical shrinkage. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 48–53. (In Russian). EDN: BUUBDZ. https://doi.org/10.31659/0585-430X-2019-773-8-48-53
  31. Panchenko A.I. Bazhenov Yu. M., Kharchenko I. Ya. Durability of the concrete produced on the basis of an expanding sulphate-aluminate cement. Durability and Sustainability of Concrete Structures (DSCS-2018). 2nd International Workshop. Moscow. Curran Associates, Inc. ACI SP-326–33, pp. 1–10.
  32. Shuldyakov K.V., Trofimov B.Ya., Kramar L.Ya. The structural factor of concrete durability. Vestnik of the YuUrGU. The series “Construction and Architecture”. 2020. Vol. 20. No. 1, pp. 46–51. (In Russian). EDN: JADLQC. https://doi.org/10.14529/build200105
  33. Lazniewska-Piekarczyk B., Miera P. Frost Resistance of Concrete from Innovative Air-Entraining Cements. IOP Conference Series: Materials Science and Engineering. 2019. No. 603, pp. 1–10. https://doi.org/10.1088/1757-899X%2F603%2F4%2F042082
  34. Vovk A.I. Additives for concretes with high frost resistance: from man-made products to specialized synthetic substances. Gidrotekhnika. 2020. Vol. 60. No. 3, pp. 68–72. (In Russian). EDN: OBXQMR
  35. Markovtsova V.V., Parfenova L.M., Zakrevskaya L.V. Heavy concrete with frost resistance F400 with complex chemical additives. Vestnik of the Polotsk State University. Series F. Construction. Applied sciences. 2024. Vol. 38, No. 3, pp. 38–45. (In Russian). EDN: AERNGZ. https://doi.org/10.52928/2070-1683-2024-38-3-38-45
  36. Dobshits L.M. Ways to increase the durability of concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 4–9. (In Russian). EDN: ZRPHEV
  37. Dobshits L.M., Nikolaeva A.A. Increasing the resistance of concrete to the environment. Vestnik of the Volga State Technological University. Series: Materials. Constructions. Technologies. 2019. Vol. 11, No. 3, pp. 18–27. (In Russian). EDN: YKAPQQ
  38. Gladkikh A.S., Kretov V.A. Increasing the frost resistance of low-grade cement concretes used for paving foundations. Vestnik of the Voronezh State University of Architecture and Civil Engineering. 2009. No. 4, pp. 166–172. (In Russian). EDN: KXMWWZ
  39. Girskas G., Nagrockiene˙ D. Crushed rubber waste impact of concrete basic properties. Construction and Building Materials. 2017. No. 140, pp. 36–42. https://doi.org/10.1016/j.conbuildmat.2017.02.107
  40. Zhu X. Influence of crumb rubber on frost resistance of concrete and effect mechanism. Procedia Engineering. 2011. No. 27, pp. 206–213. https://doi.org/10.1016/j.proeng.2011.12.445
  41. Zhang B. Rubberized geopolymer concrete: Dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber. Construction and Building Materials. 2021. No. 310, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2021.125248
  42. Richardson A. Crumb rubber used in concrete to provide freeze-thaw protection (optimal particle size). Journal of Cleaner Production. 2016. No. 112, pp. 599–606. https://doi.org/10.1016/j.jclepro.2015.08.028
  43. Wawrzenczyk J., Molendowska A., Klak A. Effect of Ground Granulated Blast Furnace Slag and Polymer Microspheres on Impermeability and Freeze-Thaw Resistance of Concrete. Procedia Engineering. 2016. No. 161, pp. 79–84. https://doi.org/10.1016/j.proeng.2016.08.501
  44. Nesvetaev G.V., Dolgova A.V. The effect of redispersible powders and low-modulus inclusions on the properties of fine-grained concrete after repeated freezing and thawing. Inzhenernyi Vestnik Dona. 2019. No. 6, pp. 1–16. (In Russian). http://www.ivdon.ru/ru/magazine/archive/N6y2019/6029 (дата обращения 13.03.2025). EDN: SEVIPX
  45. Panchenko A.I., Murashov A.O. The effect of low-modulus inclusions on the concrete frost resistance. Tekhnika i Tekhnologiya Silikatov [Silicate engineering and technology]. 2022. Vol. 29. No. 4, pp. 304–310. (In Russian). EDN: QNQEJD
  46. Wawrzenczyk J., Molendowska A., Klak A. Effect of Ground Granulated Blast Furnace Slag and Polymer Microspheres on Impermeability and Freeze-Thaw Resistance of Concrete. Procedia Engineering. 2016. No. 161, pp. 79–84. https://doi.org/10.1016/j.proeng.2016.08.501
  47. Shevkunov A.I., Dmitriev A.S. Increasing the durability of concrete by using complex additives based on cold-prepared bitumen emulsions. Beton i Zhelezobeton. 1991. No. 12, pp. 23–24. (In Russian).
  48. Pyzhov A.S. Technology of production and application of rolled road cement concrete with dispersed bitumen. Vestnik of the Tomsk State National University of Architecture and Civil Engineering. 2010. No. 3 (28), pp. 239–251. (In Russian). EDN: MUHJXD
  49. Patent RF 2351703 Sposob prigotovleniya kholodnoi organomineral’noi smesi dlya dorozhnykh pokrytii [The method of cold organomineral mixture for road surfaces preparing]. Gornaev N.A., Nikishin V.E., Evteeva S.M., Andronov S.Yu., Pyzhov A.S. Declared 15.02.2008. Published 10.04.09. (In Russian).
  50. Panchenko A.I. The criterion of concrete’s resistance to atmospheric influences from the standpoint of fracture mechanics. Izvestiya Vysshikh Uchebnykh Zavedenii. Stroitel’stvo. 1995. No. 2, pp. 55–60. (In Russian).
  51. Panchenko A.I. Assessment of concrete durability based on crack resistance characteristics. Izvestiya Vysshikh Uchebnykh Zavedenii. Stroitel’stvo. 1995. No. 12, pp. 140–144. (In Russian).
  52. Zaitsev Yu.V., Okol’nikova G.E., Dorkin V.V. Mekhanika razrushenii dlya stroitelei [Fracture mechanics for builders]. Moscow: INFRA-M. 2023. 216 p.
  53. Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike [Fracture mechanics: From theory to practice]. Moscow: Nauka. 1990. 240 p.
  54. Guzeev E.A., Leonovich S.M., Piradov K.A. Mekhanika razrusheniya: voprosy teorii i praktiki [Fracture mechanics: issues of theory and practice]. Brest: BPI. 1999. 217 p.
  55. Guzeev E.A., Piradov K.A., Mamaev T.L., Mochalov A.L. Assessment of frost resistance according to the parameters of fracture mechanics. Beton i Zhelezobeton. 2000. No. 3, pp. 26–27. (In Russian).
  56. Leonovich S.N., Al’-Fakikh Omar A.M. The use of stress intensity coefficients as criteria for assessing the frost resistance of straining concrete. Vestnik of the Brest State Technical University. 2004. No. 1, pp. 91–93. (In Russian).
  57. Siratori M., Miesi T., Matsusita Kh. Vychislitel’naya mekhanika razrusheniya [Computational fracture mechanics]. Moscow: Mir. 1986. 334 p.
  58. Wittmann F., Zaitsev J. Verformung und Bruchvorgang poröser Baustoffe bei kurzzeitiger Belastung und Dauerlast. DAfStb, Heft 232, Berlin: Ernst & SoHn, 1974, pp. 66–145.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Сoncrete frost resistance ensuring under operating conditions

Download (224KB)
3. Fig. 2. A crack growth in the body of concrete

Download (127KB)
4. Fig. 3. Cement stone (CS) and cement stone with polymer microspheres (PMS) frost resistance

Download (43KB)
5. Fig. 4. Heavy concrete with polymer microspheres frost resistance

Download (112KB)
6. Fig. 5. The LMI with different modulus of elasticity effect on the concrete frost resistance

Download (68KB)
7. Fig. 6. The frost resistance of the concrete with various sizes of LMI

Download (63KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"