Participation of Reactive Oxygen Species and Nitric Oxide in Defense of Wheat with the Sr25 Gene from Stem Rust

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The role of reactive oxygen species (ROS) and nitric oxide NO in the protection of common wheat Triticum aestivum L. from the rust fungus Puccinia graminis f. sp. tritici Erikss. and Henn. (Pgt), was studied on the example of interaction with resistant line of cv. Thatcher with the Sr25 gene from the wheatgrass Thinopyrum ponticum (TcSr25) and the susceptible cv. Saratovskaya 29 (C29). The seedlings were treated with salicylic acid (SA) as an inducer of ROS, and verapamil as Ca2+ channel inhibitor, and sodium nitroprusside (NP) as NO donor, and 2-phenyl-4, 4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) as NO scavenger. Isolates with reaction 0 (immunity) and 1 (resistance with hypersensitivity reaction, HR) were used to infect the seedlings. NO stimulated the growing tubes orientation and the formation of Pgt appressoria on the surface of resistant plants, and in susceptible plants it increased colony growth if plant were treated one day before or simultaneously with infection. The generation of superoxide anion was the main cause of Pgt appressoria death on the stomata of resistant plants, and NO did not affect tissue penetration. ROS induced HR and accelerated the destruction of the cytoplasm of cells. NO was contributed in the expansion of necrosis zone in resistant plants.

Full Text

Restricted Access

About the authors

V. V. Knaub

Omsk State Agrarian university named after P.A. Stolypin

Author for correspondence.
Email: lya.plotnikova@omgau.org
Russian Federation, Omsk, 644008

L. Y. Plotnikova

Omsk State Agrarian university named after P.A. Stolypin

Email: lya.plotnikova@omgau.org
Russian Federation, Omsk, 644008

References

  1. FAOSTAT. 2021. https://www.fao.org/faostat (accessed on 12 May 2024).
  2. Singh R.P., Hodson D.P., Jin Y., Lagudah E.S., Ayliffe M.A., Bhavani S. et al. // Phytopathology. 2015. V. 10. P. 872–884.
  3. Hovmøller M.S., Walter S., Bayles R., Hubbard A., Flath K., Sommerfeldt N. et al.// Plant Pathol. 2016. V. 65. P. 402–411. https://doi.org/10.1111/ppa.12433
  4. Baranova O.A., Sibikeev S.N., Konkova E.A. // Proceedings on Applied Botany. Genetics and Breeding. 2023. V. 184. № 1. P. 177–186. https://doi.org/10.30901/ 2227-8834-2023-1-177-186
  5. Gultyaeva E., Shaydayuk E., Kosman E. // Agriculture. 2022. V. 12. № 1957. https://doi.org/10.3390/agriculture12111957
  6. Yuan M., Pok B., Ngou M., Ding P., Xin X.-F. // Curr. Opin. Plant Biol. 2021. V. 62. № 102030. https://doi.org/10.1016/j.pbi.2021.102030
  7. Chen J., Gutjahr C., Bleckmann A., Dresselhaus T. // Mol. Plant. 2015. V. 8. P. 595–611. https://doi.org/10.1016/j.molp.2015.01.023
  8. Delledonne M., Xia Y., Dixon R.A., Lamb C. // Nature. 1998. V. 394. P. 585–588.
  9. Аллагулова Ч.Р., Юлдашев Р. А., Авальбаев А.М. // Физиология растений. 2023. Т. 70. № 2. С. 115–132. https://doi.org/10.31857/S0015330322600437
  10. Мамаева А.С., Фоменков А.А., Носов А.В., Новикова Г.В. // Физиология растений. 2017. Т. 64. № 5. С. 346–354. https://doi.org/10.7868/S0015330317050074
  11. Sun C., Zhang Y., Liu L., Liu X., Li B., Jin C., Lin X. // Hortic. Res. 2021. V. 8. № 71. https://doi.org/10.1038/s41438-021-00500-7
  12. Kolbert Z., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., et al. // Nitric Oxide. 2019. V. 93. P. 53–70. https://doi.org/10.1016/j.niox.2019.09.006
  13. Hancock J.T., Neill S.J. // Plants. 2019. V. 8. P. 41. https://doi.org/10.3390/plants8020041
  14. Maslennikova D.R., Allagulova C.R., Fedorova K.A., Plotnikov A.A., Avalbaev A.M., Shakirova F.M. // Russ. J. Plant Physiol. 2017. V. 64. P. 665–671. https://doi.org/10.1134/S1021443717040094
  15. Карпец Ю.В., Колупаев Ю.Е., Луговая А.А., Швиденко Н.В., Шкляревский М.А., Ястреб Т.О. // Физиология растений. 2020. Т. 67. № 4. С. 408–416. https://doi.org/10.31857/S0015330320030148
  16. Bezrukova M.V., Lubyanova A.R., Maslennikova D.R., Shakirova F.M., Kudoyarova G.R. // Russ. J. Plant Physiol. 2021. Т. 68. № 2. С. 307–314. https://doi.org/ 10.1134/S1021443721010040
  17. Zhang C., Czymmek K.J., Shapiro A. D. // Mol. Plant Microbe Interact. 2003. V. 16. P. 962–972.
  18. Shafiei R., Hang C., Kang J.G., Loake G.J. // Mol. Plant Pathol. 2007. V. 8. P. 773–784.
  19. Khan M., Ali S., Al Azzawi T.N.I., Yun B.-W. // Int. J. Mol. Sci. 2023. V. 24. № 4782. https://doi.org/10.3390/ijms24054782
  20. Martínez-Medina A., Pescador L., Terrón-Camero L.C., Pozo M.J., Romero-Puertas M.C. // J. Exp. Bot. 2019. V. 70. № 17. P. 4489–4503. https://doi.org/10.1093/jxb/erz289
  21. Guo P., Cao Y., Li Z., Zhao B. // Plant, Cell & Environment. 2004. V. 27. P. 473–477.
  22. Tada Y., Mori T., Shinogi T., Yao N., Takahashi S., Betsuyaku S., et al. // Mol. Pl.-Micr. Int. 2004. V. 17. P. 245–253.
  23. Qiao M., Sun J., Liu N., Sun T., Liu G., Han S. et al. // PLoS ONE. 2015. V. 10. № 7. e0132265. https://doi.org/10.1371/journal. pone.0132265
  24. Plotnikova L., Knaub V., Pozherukova V. // Int. J. Plant Biol. 2023. V. 14. P. 435–457. https://doi.org/10.3390/ijpb14020034
  25. McIntosh R.A., Wellings C.R., Park R.F. (Eds.). Wheat Rusts. An Atlas of Resistance Genes. Dordrecht: Springer, 1995. 200 p. https://doi.org/10.1071/9780643101463
  26. Roelfs A.P., Martens J.W. // Phytopathology. 1988. V. 78. P. 526–533.
  27. Тютерев С.Л. Научные основы индуцированной болезнеустойчивости растений.СПб.: ООО “Инновационный центр защиты растений”. ВИЗР, 2002. 328 с.
  28. Xu H., Heath M.C. // Plant Cell. 1998. V. 10. P. 585–597. https://doi.org/10.1105/tpc.10.4.585
  29. Garcia-Mata C., Lamattina L. // Plant Physiology. 2001. V. 126(3). P. 1196–1204. https://doi.org/10.1104/pp.126.3.1196
  30. Wang J., Higgins V.J. // Physiol. Mol. Plant Pathol. 2006. V. 67. P. 131–137. https://doi.org/10.1016/j.pmpp.2005.11.002
  31. Михайлова Л.А., Квитко К.В. // Микология и фитопатология. 1970. Т. 4. № 4. С. 269–273.
  32. Фатхутдинова Д.Р., Сахабутдинова А.Р., Максимов И.В., Яруллина Л.Г., Шакирова Ф.М. // Агрохимия. 2004. № 8. С. 27–31.
  33. Bindschedler L.V., Minibayeva F., Gardner S.L., Gerrish C., Davies D.R., Bolwell G.P. // New Phytologist. 2001. V. 151. № 2. P. 185–194
  34. Карпец Ю.В., Колупаев Ю.Е., Вайнер А.А. // Физиология растений. 2015. Т. 62. № 1. С. 72–78. https://doi.org/10.7868/S0015330314060098
  35. Барыкина Р.П., Веселова Т.Д., Девятов А.Г., Джалилова Х.Х., Ильина Г.М., Чубатова Н.В. // Справочник по ботанической микротехнике. Основы и методы. М.: Издательство МГУ, 2004. 312 с.
  36. Plotnikova L.Y., Meshkova L.V. // Mikol. Fitopatol. 2009. V. 43. P. 343–357.
  37. Доспехов Б.А. // Методика полевого опыта. М.: Агропромиздат, 1985. 5 изд. 351 с.
  38. Мамаева А.С., Фоменков А.А., Носов А.В., Мошков И.Е., Мур Л.А.Д., Холл М.А. и др. // Физиология растений. 2015. Т. 62. С. 459–473. https://doi.org/10.7868/S0015330315040132
  39. Piterková J., Hofman J., Mieslerová B., Sedlářová M., Luhová L., Lebeda A., Petřivalský M. // Environ.Exp. Bot. 2011. V. 74. P. 37–44.
  40. Delledonne M., Zeier J., Marocco A., Lamb C. // Proc. Natl. Acad. Sci. Unit. States Am. 2001. V. 98. P. 13454–13459.
  41. Fang F.C. // J. Clin. Invest. 1997. V. 99. P. 2818–2825.
  42. Hunt M.D., Ryals J.A. // Crit. Rev. Plant. Sci. 1996. V. 15. P. 583–606.
  43. Heath M.C. // Plant Mol. Biol. 2000. V. 44. Р. 321–334.
  44. Melotto M., Zhang L., Oblessuc P.R., He S.Y. // Plant Physiol. 2017. V. 174. P. 561–571.
  45. Plotnikova L., Pozherukova V., Knaub V., Kashuba Y. // Agriculture. 2022. V. 12. № 2116. https://doi.org/10.3390/ agriculture12122116
  46. Плотникова Л.Я., Пожерукова В.Е., Митрофанова О.П., Дегтярев А.И. // Прикл. биохимия и микробиология. 2016. Т. 52. № 1. С. 74–84.
  47. Calcagno C., Novero M., Genre A., Bonfante P., Lanfranco L. // Mycorrhiza. 2012. V. 22. P. 259–269.
  48. Cui J.L., Wang Y.N., Jiao J., Gong Y., Wang J.H., Wang M.L. // Scientific Reports. 2017. V. 7. № 12540. https://doi.org/10.1038/s41598-017-12895-2
  49. Максимов И.В., Черепанова Е.А. // Успехи современной биологии. 2006. Т. 126. С. 250–261.
  50. Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. // Cytol. Genet. 2015. V. 49. № 5. P. 338–348. https://doi.org/10.3103/S0095452715050047
  51. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. // J. Exp. Bot. 2002. V. 53. P. 103–110.
  52. Romero-Puertas M.C., Campostrini N., Mattè A., Righetti P.G., Perazzolli M., Zolla L., et al.// Proteomics. 2008. V. 8. P. 1459–1469.
  53. Foissner I., Wendehenne D., Langebartels C., Durner J. // Plant J. 2000. V. 23. P. 817–824.
  54. Romero-Puertas M.C., Delledonne M. // IUBMB Life.2003. V. 55 № 10–11. P. 579–583. https://doi.org/10.1080/15216540310001639274

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of changes in the content of the superoxide anion O2•- in plants infected with P. graminis f. sp. tritici of susceptible wheat varieties and a stable line when treated with pharmacological preparations: C-29 – Saratovskaya 29; Tc-1 and Tc-2 – TSG25 line infected with Pgt1 and Pgt2 isolates, respectively; Ve – verapamil; NP – sodium nitroprusside; RT – c-PTIO; SK – salicylic acid; -1, 0 and 1 – treatment of plants with preparations for 24 hours, simultaneously and after 24 hours n/ in. 0, 12, 24, 48 – time after inoculation (h).

Download (213KB)
3. Fig. 2. Dynamics of accumulation of hydrogen peroxide H2O2 (a, c, e) and nitric oxide NO (b, d, e) in tissues of the Saratovskaya 29 (a, b) variety and the TSG25 line during infection with Pgt1 (c, d) and Pgt2 (d, e) isolates: SC – salicylic acid acid; Ve – verapamil; NP – nitroprusside; RT – c-PTIO; -1, 0 and 1 – treatment of plants with preparations in 24 hours, simultaneously and after 24 hours. 0, 12, 24, 48, 72, 120, 240 – time after inoculation, h.

Download (607KB)
4. Fig. 3. The results of the effect of ROS and NO generation inducers on the development of Pgt in the susceptible Saratovskaya 29 (C29) variety (a, c, e) and the stable TcSr25 line (b, d, e–t): a – empty stomatal appendage, b – stomatal appendage with stained mitochondria, c – colony with infectious hyphae and haustoria in mesophyll cells, d – accumulation of H2O2 in the cytoplasm of the dead appendage and the appearance of deposits on the walls of the closing cells of the stomata, e – accumulation of O2• in the cytoplasm of the appendage and PV on a stable plant, e – accumulation of H2O2 in the appendage and PV, – damage to the cytoplasm of the closing stomata cells (arrow), h – accumulation of H2O2 in the cytoplasm of the closing stomata cells and adjacent cells, i – the initial stage of plant cell death as a result of the microwave reaction after the introduction of haustoria, k – accumulation of H2O2 in the appendage and the cell that died after the introduction of haustoria, l – increased staining of the cytoplasm of the cell that died in as a result of the microwave reaction after SC treatment, m – autofluorescence of the cytoplasm of a cell that died as a result of the microwave reaction after SC treatment, h – plant cells with enhanced coloration and died as a result of the microwave reaction, o – intense microwave reaction in the colony zone in a stable line after SC treatment, p – autofluorescence of dead cells in the pustule zone, p – formation of infectious structures after treatment with verapamil, c – necrotic cells that died as a result of the microwave reaction and a zone of collapsed cells with enhanced cytoplasmic coloration (arrow) after NP treatment, t – intense autofluorescence cells with cytoplasm destroyed during microwave radiation (arrow) and weak autofluorescence of collapsed cells nearby. Coloring: a, b, W, I, l, n. o, r – aniline blue; b, d – HCT; g, k, c – aniline blue + DAB; e, z – DAB; m, p, t – autofluorescence. Designations: ap – appressory, ga – haustoria, ig – infectious hyphae, nk – necrotic cell of a plant, ocs – deposits on the cell wall, pv – subcustular vesicle, rt – germ tube, c – spore, u – stomata, up – urediniopustule.

Download (1MB)
5. 4. The effect of treatment with pharmacological preparations on the area of pathogen colonies and the microwave reaction zone (240 h/in): area, mm2×103: I – colonies, II – necrosis zones. C29-2 is the Saratovskaya 29 variety infected with Pgt2 isolate, Tc-1 and Tc-2 are the TcSr25 line infected with Pgt1 and Pgt2 isolates, respectively. Experimental options: k – control; 1, 2, 3 – SC treatment; 4, 5, 6 – verapamil treatment; 7, 8, 9 – NP treatment; 10, 11, 12 – c-PTIO treatment; terms of use of drugs: 1, 4, 7, 10 – in 24 hours before inoculation; 2, 5, 8, 11 – simultaneously with inoculation; 3, 6, 9, 12 – 24 hours after inoculation.

Download (228KB)

Copyright (c) 2024 Russian Academy of Sciences