Multicomponent Cyclizations of Ethyl Trifluoroacetoacetate with Acetaldehyde and 1,3-Diamines to Heteroannulated Pyridines

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A four-component approach was developed for the synthesis of cis- and trans-diastereomeric partially hydrogenated pyrido[1,2-a]pyrimidines and pyrido[2,1-b]quinazolines based on the cyclization of ethyl trifluoroacetoacetate with two acetaldehyde molecules and 1,3-diaminopropane or 2-aminomethylaniline. The zwitterionic salt of tetrahydropyrimidine was isolated as a by-product from the reaction with 1,3-diaminopropane. And from the reaction with 2-aminomethylaniline 7-hydroxy-7-(trifluoromethyl)-5,5a,6,7,8,11-hexahydro-9H-pyrido[2,1-b]quinazolin-9-one was obtained as a result of the participation of one aldehyde molecule. The diastereomeric structure of the synthesized heterocycles was established on the basis of 1Н, 19F, 13С NMR spectroscopy and XRD. A mechanism for the formation of new heteroannulated pyridines was proposed.

全文:

受限制的访问

作者简介

S. Kushch

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pmv@ios.uran.ru
ORCID iD: 0000-0002-7518-8998
俄罗斯联邦, Ekaterinburg

M. Goryaeva

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: marinavgoryaeva@gmail.com
ORCID iD: 0000-0002-7853-688X
俄罗斯联邦, Ekaterinburg

E. Surnina

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: pmv@ios.uran.ru
ORCID iD: 0000-0003-2961-6450
俄罗斯联邦, Ekaterinburg

Ya. Burgart

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: pmv@ios.uran.ru
ORCID iD: 0000-0001-6061-2410
俄罗斯联邦, Ekaterinburg

V. Saloutin

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: pmv@ios.uran.ru
ORCID iD: 0000-0003-1976-7861
俄罗斯联邦, Ekaterinburg

参考

  1. Zhu J., Bienayme H., Multicomponent Reactions, Wiley-VCH Weinheim, Germany, 2005.
  2. Ganem. B. Acc. Chem. Res. 2009, 42, 463–472. doi: 10.1021/ar800214s
  3. Karnakar K., Ramesh K., Reddy K.H.V., Anil Kumar B.S.P., Nanubonula J.B., Nageswar Y.V.D. New J. Chem. 2015, 39, 8978–8983. doi: 10.1039/C5NJ01448D
  4. Gibadullina N.N., Latypova D.R., Novikov R.A., Tomilov Y.V., Dokicheva V.A. Arkivoc 2017, 222–235. doi: 10.24820/ark.5550190.p010.003
  5. Zhou L., Yuan F., Zhou Y., Duan W., Zhang M., Deng H., Song L. Tetrahedron 2018, 74, 3761–3769. doi: 10.1016/j.tet.2018.05.059
  6. Bhatt J.D., Patel T.S., Chudasama C.J., Patel K.D. ChemistrySelect 2018, 3, 3632–3640. doi: 10.1002/slct.201702285
  7. Dayakar C., Raju B.C., ChemistrySelect, 2018, 3, 9388–9392. doi: 10.1002/slct.201801430
  8. Du X.-X., Zi Q.-X., Wu Y.-M., Jin Y., Lin J., Yan S.-J. Green Chem. 2019, 21, 1505–1516. doi: 10.1039/C8GC03698E
  9. Бургарт Я.В., Кузуева О.Г., Прядеина М.В., Каппе С.О., Салоутин В.И. ЖОрХ, 2001, 37, 915–926. [Burgart Ya.V., Kuzueva O.G., Pryadeina M.V., Kappe C.O., Saloutin V.I. Russ. J. Org. Chem. 2001, 37, 869–880.] doi: 10.1023/A:1012473901354
  10. Shashi R., Prasad N.L., Begum N.S. J. Struct. Chem. 2020, 61, 938–947. doi: 10.1134/s0022476620060141.
  11. Goryaeva M.V., Kushch S.O., Khudina O.G., Burgart Ya.V., Ezhikova M.A., Kodess M.I., Slepukhin P.A., Volobueva A.S., Slita A.V., Esaulkova I.L., Misiurina M.A., Zarubaev V.V., Saloutin V.I. J. Fluor. Chem. 2021, 241, 109686. doi: 10.1016/j.jfluchem.2020.109686
  12. Kushch S.O., Goryaeva M.V., Burgart Ya.V., Ezhikova M.A, Kodess M.I., Slepukhin P.A., Saloutin V.I. Asian J. Org. Chem., 2022, 11, e202100709. doi: 10.1002/ajoc.202100709
  13. Smith R.L., Barrett R. J., Sanders-Bush E., J. Pharmacol. Exp. Ther. 1995, 275, 1050–1057.
  14. Meltzer H.Y., Simonovic M., Gudelsky G.A. Eur. J. Pharmacol. 1983, 92, 83–89. doi: 10.1016/0014-2999(83)90111-5
  15. Awouters F., Vermeire J., Smeyers F., Vermote P., Van Beek R., Niemegeers C.J.E. Drug. Dev. Res. 1986, 8, 95–102. doi: 10.1002/ddr.430080112
  16. Yanagihara Y., Kasai H., Kawashima T., Shida T. Jpn. J. Pharamacol. 1988, 48, 91–101. doi: 10.1254/jjp.48.91
  17. Shakhidoyatov K.M., Elmuradov B. Z., Chem. Nat. Compd. 2014, 50, 781–800. doi: 10.1007/s10600-014-1086-6
  18. Kshirsagar U.A. Org. Biomol. Chem. 2015, 13, 9336–9352. doi: 10.1039/c5ob01379h
  19. Jeffries B., Wang Z., Graton J., Holland S.D., Brind T., Greenwood R.D.R., Le Questel J.Y., Scott J.S., Chiarparin E., Linclau B. J. Med. Chem., 2018, 61, 10602–10618. doi: 10.1021/acs.jmedchem.8b01222
  20. Преч Э., Бюльманн Ф., Аффольтер К., Определение строения органических соединений, пер. с англ. Б.Н. Тарасевича, Мир, Бином, Лаборатория знаний, Москва, 2006. doi: 10.1007/978-3-662-04201-4
  21. Hill R.K., Carlson R.M. J. Am. Chem. Soc. 1965, 87, 2772–2773. doi: 10.1021/ja01090a054
  22. Atkinson, R. S. J. Chem. Soc. D. 1969, 13, 735. doi: 10.1039/c2969000735a
  23. Dolomanov O.V., Bourhis L.J., Gildea R.J., Ho-ward J.A.K., Puschmann H. J. Appl. Crystallogr. 2009, 42, 339–341. doi: 10.1107/S0021889808042726
  24. Sheldrick G.M. Acta Crystallogr., Sect. A: Cryst. Phys. 2008, 64, 112–122. doi: 10.1107/S0108767307043930

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SSCC of diastereotopic protons in heterocycles 4, 6, 7

下载 (134KB)
3. Fig. 2. General view of the molecule of compound 4trans according to X-ray diffraction data with atoms represented by thermal vibration ellipsoids with 30% probability

下载 (106KB)
4. Fig. 3. General view of the molecule of compound 4cis according to X-ray diffraction data with atoms represented by thermal vibration ellipsoids with 30% probability

下载 (107KB)
5. Fig. 4. General view of the molecule of compound 5 according to X-ray diffraction data with atoms represented by thermal vibration ellipsoids with a 30% probability

下载 (103KB)
6. Scheme 1

下载 (94KB)
7. Scheme 2

下载 (93KB)
8. Scheme 3

下载 (213KB)

版权所有 © Russian Academy of Sciences, 2024