Coupled electroreduction of CO2 and H+ in the presence of substituted salts of 2,2'-bipyridine

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The possibility of conjugate electroreduction of carbon dioxide and hydrogen in the presence of 2,2'-bipyridine and its N -substituted salts in the presence of acids with different pKa values was studied. It was revealed how the strength of the acid affects the efficiency of the process; in particular, it was determined that the presence of methylsulfonic acid in the system promotes the conjugate formation of hydrogen and the reduction of carbon dioxide to formic acid. Probable mechanisms for the reactions occurring have been proposed.

作者简介

E. Okina

National Research Ogarev Mordovia State University

L. Klimaeva

National Research Ogarev Mordovia State University

Email: l_klimaeva@mail.ru

D. Chugunov

National Research Ogarev Mordovia State University

S. Kostryukov

National Research Ogarev Mordovia State University

A. Kozlov

National Research Ogarev Mordovia State University

O. Tarasova

National Research Ogarev Mordovia State University

A. Yudina

National Research Ogarev Mordovia State University

参考

  1. Jenkinson D.S., Adams D.E., Wild A. Nature. 1991, 351. 304-306. doi: 10.1038/351304a0
  2. Weimer T., Schaber K., Specht M., Bansi A. Energy Convers. Manag. 1996, 370020, 1351-1356. doi: 10.1016/0196-8904(95)00345-2
  3. Liu J.-L., Wang X., Li X.-S., Likozar B., Zhu A.-M. J. Phys. D Appl. Phys. 2020, 53, 253001. doi: 10.1088/1361-6463/ab7c04
  4. Jessop P.G., Jo� F., Tai C.-C. Coord. Chem. Rev. 2004, 248, 2425-2442. doi: 10.1016/j.ccr.2004.05.019
  5. Glockler G. Phys. Chem. 1958, 62, 1049-1054. doi: 10.1021/j150567a006
  6. Tanaka K. BCSJ. 1998, 71, 17-29. doi: 10.1246/bcsj.71.17
  7. Ren S., Jouli� D., Salvatore D., Torbensen K., Wang M., Robert M., Berlinguette C.P. Science. 2019, 365, 367-369. doi: 10.1126/science.aax4608
  8. Jin S., Hao Z., Zhang K., Yan Z., Chen J. Angew. Chem. 2021, 133, 20795-20816. doi: 10.1002/ange.202101818
  9. Zhu D.D., Liu J.L., Qiao S.Z. Adv. Mater. 2016, 28, 3423-3452. doi: 10.1002/adma.201504766
  10. Alberico E., Nielsen M. Chem. Commun. 2015, 51, 6714-6725. doi: 10.1039/C4CC09471A
  11. Dong K. Razzaq R., Hu Y., Ding K. Top Curr. Chem. 2017, 375, 23. doi: 10.1007/s41061-017-0107-x
  12. Qiao J., Liu Y., Hong F., Zhang J. Chem. Soc. Rev. 2014, 43, 631-675. doi: 10.1039/C3CS60323G
  13. Zheng Y., Vasileff A., Zhou X., Jiao Y., Jaroniec M., Qiao S.-Z. J. Am. Chem. Soc. 2019, 141, 7646-7659. doi: 10.1021/jacs.9b02124
  14. Boutin E., Robert M. Trends Chem. 2021, 3, 359-372. doi: 10.1016/j.trechm.2021.02.003
  15. Lim R. J., Xie M., Sk M.A., Lee J.-M., Fisher A., Wang X., Lim K.H. Catal. Today. 2014, 233, 169-180. doi: 10.1016/j.cattod.2013.11.037
  16. Specht M., Staiss F., Bandi A., Weimer T. Int. J. Hydrog. Energy. 1998, 23, 387-396. doi: 10.1016/S0360-3199(97)00077-3

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023