Origin and evolution of ANTP-class homeobox genes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Genes of the ANTP class are known as evolutionary conserved and hierarchically high-level regulators of development. They are the most studied and the most numerous homeobox genes in animals. These genes encode homeodomain transcription factors and possess a set of unique features, such as clustering, colinearity, evolutionary conservation, and consistent involvement in various differentiation processes throughout the ontogeny of multicellular animals.

The first ANTP genes (from the NK subclass) appear in ctenophores and sponges, which is why the evolution of Metazoa from a common unicellular ancestor is often associated with the emergence of the ANTP class (Larroux et al., 2007; Moroz et al., 2014). Phylogenetic analysis of homeobox genes, conducted across a broad range of basal Metazoa taxa, has shown that ANTP genes from the Hox and ParaHox subclasses arose in the last common ancestor of Cnidaria and Bilateria. These new findings raise further questions. How does the evolution of these clusters correlate with the evolution of animals? What functions were acquired by the new genes, and which were inherited from ancestral NK genes? What changes in their regulation could have influenced the evolution of body plans in Metazoa? Is it even possible to answer these questions by studying modern multicellular organisms?

This review aims to address these and other questions regarding the evolution of ANTP gene clusters. Special attention is given to the concept of the “megacluster” — a hypothetical synteny that united all ANTP subclasses at the dawn of Metazoa evolution.

The decreasing cost of sequencing technologies offers some hope for answers, as it expands the range of model species available for study. The broader this range, the easier it becomes to identify universal and lineage-specific patterns of molecular and morphological evolution.

Texto integral

Acesso é fechado

Sobre autores

M. Kulakova

St. Petersburg State University

Autor responsável pela correspondência
Email: m.kulakowa@spbu.ru
Rússia, 199034, St. Petersburg, Old Peterhof, Oranienbaumskoye shosse 2

Bibliografia

  1. Albertin C.B., Medina-Ruiz S., Mitros T. et al. Genome and transcriptome mechanisms driving cephalopod evolution // Nat. Commun. 2022. V. 13(1). Art. no. 2427. https://doi.org/10.1038/s41467-022-29748-w
  2. Azpiazu N., Frasch M. Tinman and bagpipe: Two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila // Genes Dev. 1993. V. 7(7B). P. 1325–1340. https://doi.org/10.1101/gad.7.7b.1325
  3. Awgulewitsch A. Hox in hair growth and development // Naturwissenschaften. 2003 V. 90(5). P. 193–211. https://doi.org/10.1007/s00114-003-0417-4
  4. Battulin N., Fishman V.S., Mazur A.M. et al. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach // Genome biology. 2015. V. 16. P. 1–15.
  5. Brooke N.M., Garcia-Fernàndez J., Holland P.W. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster // Nature. 1998. V. 392(6679). P. 920–922. https://doi.org/10.1038/31933
  6. Bürglin T.R., Affolter M. Homeodomain proteins: An update // Chromosoma. 2016. V. 125(3). P. 497–521. https://doi.org/10.1007/s00412-015-0543-8
  7. Butts T., Holland P.W., Ferrier D.E. The urbilaterian Super-Hox cluster // Trends Genet. 2008. V. 24(6). P. 259–262. https://doi.org/10.1016/j.tig.2007.09.006
  8. Cannon J.T., Vellutini B.C., Smith J. 3rd, Ronquist F., Jondelius U., Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa // Nature. 2016. V. 530(7588). P. 89–93. https://doi.org/10.1038/nature16520
  9. Chan C., Jayasekera S., Kao B., Páramo M., von Grotthuss M., Ranz J.M. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila // Nat. Commun. 2015. V. 6. Art. no. 6509. https://doi.org/10.1038/ncomms7509
  10. Chiori R., Jager M., Denker E., Wincker P., Da Silva C., Le Guyader H., Manuel M., Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One. 2009. V. 4(1). Art. no. e4231. https://doi.org/10.1371/journal.pone.0004231
  11. Ferrier D.E.K. Evolution of homeobox gene clusters in animals: the giga-cluster and primary vs. secondary clustering // Frontiers in Ecology and Evolution. 2016. V. 4. P. 36.
  12. Fröbius A.C., Funch P. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans // Nat. Commun. 2017. V. 8(1). P. 9. https://doi.org/10.1038/s41467-017-00020-w
  13. Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters // Nat. Rev. Genet. 2005. V. 6(12). P. 881–892. https://doi.org/10.1038/nrg1723
  14. Guiglielmoni N., Rivera-Vicéns R., Koszul R., Flot J.F. A deep dive into genome assemblies of non-vertebrate animals // Peer Community Journal. 2022. V. 2. Art. no. e29
  15. He S., Del Viso F., Chen C.Y., Ikmi A., Kroesen A.E., Gibson M.C. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis // Science. 2018. V. 361(6409). P. 1377–1380. https://doi.org/10.1126/science.aar8384
  16. Hecox-Lea B.J., Mark Welch D.B. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers // BMC Evol. Biol. 2018. V. 18(1). P. 177. https://doi.org/10.1186/s12862-018-1288-9
  17. Holland P.W., Booth H.A., Bruford E.A. Classification and nomenclature of all human homeobox genes // BMC Biol. 2007. V. 5. P. 47. https://doi.org/10.1186/1741-7007-5-47. PMID: 17963489; PMCID: PMC2211742.
  18. Holland P.W. Evolution of homeobox genes // Wiley Interdiscip Rev. Dev. Biol. 2013. V. 2(1). P. 31–45 https://doi.org/10.1002/wdev.78
  19. Hombría J.C., García-Ferrés M., Sánchez-Higueras C. Anterior Hox genes and the process of cephalization // Front. Cell Dev. Biol. 2021. V. 9. P. 718175. https://doi.org/10.3389/fcell.2021.718175
  20. Hui J.H., McDougall C., Monteiro A.S., Holland P.W., Arendt D., Balavoine G., Ferrier D.E. Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization // Mol. Biol. Evol. 2012. V. 29(1). P. 157–165. https://doi.org/10.1093/molbev/msr175
  21. Ikuta T., Yoshida N., Satoh N., Saiga H. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development // Proc. Natl. Acad. Sc.i USA. 2004. V. 101(42). P. 15118–15123. https://doi.org/10.1073/pnas.0401389101
  22. Jagla K., Bellard M., Frasch M. A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs // Bioessays. 2001. V. 23(2). P. 125–133.
  23. https://doi.org/10.1002/1521-1878(200102)23:2 <125:: AID-BIES1019>3.0.CO;2-C
  24. Kaul-Strehlow S., Urata M., Praher D., Wanninger A. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube // Sci. Rep. 2017. V. 7(1). P. 7003. https://doi.org/10.1038/s41598-017-07052-8
  25. Khalturin K., Shinzato C., Khalturina M. et al. Medusozoan genomes inform the evolution of the jellyfish body plan // Nat. Ecol. Evol. 2019. V. 3(5). V. 811–822.
  26. https://doi.org/10.1038/s41559-019-0853-y
  27. Kim Y., Nirenberg M. Drosophila NK-homeobox genes // Proc. Natl. Acad. Sci.U S A. 1989. V. 86(20). P. 7716–7720. https://doi.org/10.1073/pnas.86.20.7716
  28. Kulakova M.A., Cook C.E., Andreeva T.F. ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa) // BMC Dev. Biol. 2008. V. 8. P. 61.
  29. Maconochie M., Nonchev S., Morrison A., Krumlauf R. Paralogous Hox genes: Function and regulation // Annu. Rev. Genet. 1996. V. 30. P. 529–556. https://doi.org/10.1146/annurev.genet.30.1.529
  30. Matus D.Q., Halanych K.M., Martindale M.Q. The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata // Integr. Comp. Biol. 2007. V. 47(6). P. 854–864. https://doi.org/10.1093/icb/icm077
  31. Mio C., Baldan F., Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases // Genes Dis. 2022. V. 10(5). P. 2038–2048. https://doi.org/10.1016/j.gendis.2022.10.001
  32. Moroz L.L., Kocot K.M., Citarella M.R. et al. The ctenophore genome and the evolutionary origins of neural systems // Nature. 2014. V. 510(7503). V. 109–114. https://doi.org/10.1038/nature13400
  33. Nong W., Cao J., Li Y., Qu Z. et al. Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing // Nat. Commun. 2020. V. 11(1). P. 3051. https://doi.org/10.1038/s41467-020-16801-9
  34. Paps J., Rossi M.E., Bowles A.M.C., Álvarez-Presas M. Assembling animals: Trees, genomes, cells, and contrast to plants // Front. Ecol. Evol. 2023. V. 11. Art. no. 1185566. https://doi.org/10.3389/fevo.2023.1185566
  35. Powers T.P., Amemiya C.T. Evidence for a Hox14 paralog group in vertebrates // Curr. Biol. 2004. V. 14(5). P. R183–184. https://doi.org/10.1016/j.cub.2004.02.015
  36. Ryan J.F., Mazza M.E., Pang K., Matus D.Q., Baxevanis A.D., Martindale M.Q., Finnerty J.R. Pre-bilaterian origins of the Hox cluster and the Hox code: Evidence from the sea anemone, Nematostella vectensis // PLoS One. 2007. V. 2(1). Art. no. e153. https://doi.org/10.1371/journal.pone.0000153
  37. Ryan J.F., Pang K. Mullikin J.C., Martindale M.Q., Baxevanis A.D. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa // Evodevo. 2010. V. 1(1). Art. no. 9. https://doi.org/10.1186/2041-9139-1-9
  38. Saudemont A., Dray N., Hudry B., Le Gouar M., Vervoort M., Balavoine G. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis // Dev. Biol. 2008. V. 317(2). P. 430–443. https://doi.org/10.1016/j.ydbio.2008.02.013
  39. Schnitzler C.E., Chang E.S., Waletich J. et al. The genome of the colonial hydroid Hydractinia reveals that their stem cells use a toolkit of evolutionarily shared genes with all animals // Genome Res. 2024. V. 34(3). P. 498–513. https://doi.org/10.1101/gr.278382.123
  40. Seo H.C., Edvardsen R.B., Maeland A.D. et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica // Nature. 2004. V. 431(7004). P. 67–71. https://doi.org/10.1038/nature02709
  41. Sharkey M., Graba Y., Scott M.P. Hox genes in evolution: Protein surfaces and paralog groups // Trends Genet. 1997. V. 13(4). P. 145–151. https://doi.org/10.1016/s0168-9525(97)01096-2
  42. Smith J.J., Kratsios P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity // Semin. Cell Dev. Biol. 2024. V. 152–153. P. 58–69. https://doi.org/10.1016/j.semcdb.2022.11.012
  43. Suga H., Chen Z., de Mendoza A. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals // Nat. Commun. 2013. V. 4. Art. no. 2325. https://doi.org/10.1038/ncomms3325
  44. Technau U., Genikhovich G. Evolution: Directives from sea anemone Hox genes // Curr. Biol. 2018. V. 28(22). P. R1303–R1305. https://doi.org/10.1016/j.cub.2018.09.040
  45. Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination // Front. Cell Dev. Biol. 2024. V. 12. Art. no. 1397807. https://doi.org/10.3389/fcell.2024.1397807
  46. Zimmermann B., Montenegro J.D., Robb S.M.C. et al. Topological structures and syntenic conservation in sea anemone genomes // Nat. Commun. 2023. V. 14(1). Art. no. 8270. https://doi.org/10.1038/s41467-023-44080-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The structure of the homeodomain and classes of homeobox genes. (a) The DNA-binding domain of homeodomain proteins (homeodomain; HD) consists of 60 amino acid residues and is organized into three alpha-helices, one of which (3) enters the major groove of DNA and recognizes a short consensus. (b) Separate classes of homeobox genes. Many genes encode additional domains for binding to DNA (PAIRED, POU, Lim) or to partner proteins. Genes from the ANTP class interact with proteins from the TALE class via the hexapeptide motif Hex (based on Burglin, Affolter, 2016).

Baixar (172KB)
3. Fig. 2. Scenario of sequential emergence of genes from the ANTP class. Cis-duplication of the ancestral factor Proto-ANTP led to the emergence and subsequent structural expansion of genes of the most ancient ANTP cluster - NK. The NK cluster was found in the sponge Amphimedon and one of its five genes (probably an ortholog of the Hox-associated gene Hex) already contains signs (signatures) of belonging to another subclass. At the next stage, ancestral genes of the ParaHox, Hox, Hox-linked (HoxL) and NK2 clusters arose sequentially or simultaneously. Animals in whose genomes there are traces of emerging new clusters have not been found, which may indicate a very rapid process of structural evolution. In modern cnidarians and bilaterians (Nephrozoa), ANTP genes are well recognized and fall into two large (SuperHox and NK) and two small (ParaHox, NK2) subclasses. Hox genes (EuHox), belonging to the SuperHox subclass, are the youngest ANTP genes. Vigorous structural evolution of Hox genes accompanied the emergence of bilaterians and their evolutionary radiation. The diagram does not indicate physical linkage of genes and does not show clade-specific paralogs from conserved families (according to Garcia-Fernàndez, 2005; Butts et al., 2008; Ferrier, 2016; Zimmermann et al., 2023).

Baixar (242KB)
4. Fig. 3. ANTP gene clusters in annelids and lancelets. Four nearly identical syntenies in the genomes of protostomes and deuterostomes neither support nor reject the megacluster hypothesis. If such a cluster existed, it would have already broken up into subclusters (ParaHox, SuperHox, NK, and NK2) in the last common ancestor of Nephrozoa. Each subcluster acquired individual functions early in development. Gray arrows indicate breakpoints (after Hui et al., 2012; Ferrier, 2016).

Baixar (180KB)
5. Fig. 4. Synteny of ANTP genes in cnidarians of the phyla Anthozoa and Medusozoa. A large number of translocations between clusters from different subclasses indicates their recent physical linkage at the level of a larger synteny - a megacluster or a large fragment thereof. In the Nematostella genome, ANTP clusters contain a small number of such rearrangements. In contrast, in scyphozoan jellyfish, the NK and SuperHox genes formed mixed syntenies that could have arisen during the period of the common SuperHox/NK cluster. The genes of the ParaHox cluster are isolated from the neighborhood with other ANTPs. They could not have been part of the megacluster or lost their connection with it earlier than the other ANTP subclusters (based on Nong et al., 2020; Zimmermann et al., 2023).

Baixar (210KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025