RNA-binding protein NXF1 is essential for the development of the nervous system of Drosophila melanogaster

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In Drosophila melanogaster, as in all Opisthokonta, the evolutionary conserved protein NXF1 (Nuclear eXport Factor 1) is responsible for nuclear export of mRNA from the nucleus to the cytoplasm. Traditionally, it is thought that after leaving the nuclear pore, the NXF1 leaves the mRNP complex and returns to the nucleus. We have shown for the first time that in Drosophila the NXF1 protein presents in the cytoplasm of various cells, including nerve cells. The cytoplasmic localisation of the NXF1 indicates that nuclear export function is not the only function of this protein. The Nxf1 gene in Drosophila has the historically established name sbr (small bristles). A number of mutations in the sbr are characterised by dominant phenotypic effects. In particular, the sbr12 mutant allele leads to abnormalities in Drosophila brain formation. Characteristic morphological defects in the neuropils of the optic lobe suggest that the NXF1 (SBR) is involved in the regulation of the spatial architecture of the fly brain, including the formation of neuropil boundaries. The evolutionary conservatism of Nxf1 opens up the possibility of studying the role of the NXF1 protein in the development of the nervous system using Drosophila as a model.

Texto integral

Acesso é fechado

Sobre autores

E. Golubkova

St. Petersburg State University

Autor responsável pela correspondência
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034

A. Yakimova

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: e.golubkova@spbu.ru
Rússia, Korolyova st. 4, Obninsk, 249036

K. Akhromov

St. Petersburg State University; Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”

Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034; Orlova roshcha 1, Gatchina, 188300

E. Ryabova

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”

Email: e.golubkova@spbu.ru
Rússia, Orlova roshcha 1, Gatchina, 188300

D. Grudkova

St. Petersburg State University

Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034

L. Barabanova

St. Petersburg State University

Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034

S. Sarantseva

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”

Email: e.golubkova@spbu.ru
Rússia, Orlova roshcha 1, Gatchina, 188300

L. Mamon

St. Petersburg State University

Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034

Bibliografia

  1. Ацапкина А.А., Голубкова Е.В., Касаткина В.В. и др. Особенности сперматогенеза у Drosophila melanogaster: роль основного транспортного рецептора мРНК (DmNXF1) // Цитология. 2010. Т.52. № 7. С. 574–579.
  2. Голубкова Е.В., Ацапкина А.А., Мамон Л.А. Роль гена sbr (small bristles)/Dm nxf1 (nuclear export factor 1) в синцитиальные периоды развития у Drosophila melanogaster // Цитология. 2015. Т. 57. № 4. С. 294–304.
  3. Кисели Д. Практическая микротехника и гистохимия. Изд-во Академии наук Венгрии. Будапешт. 1962. 400 с.
  4. Никитина Е.А., Комарова А.В., Голубкова Е.В., Третьякова И.В., Мамон Л.А. Полудоминантное влияние мутации l(1)ts403 (sbr10) на нерасхождение половых хромосом в мейозе у самок Drosophila melanogaster при тепловом воздействии. // Генетика. 2003а. Т. 39. № 3. С. 269–275.
  5. Никитина Е.А., Токмачева Е.В., Савватеева-Попова Е.В. Тепловой шок в период развития центральных структур мозга дрозофилы: формирование памяти у мутанта l(1)ts403 Drosophila melanogaster // Генетика. 2003б. Т. 39. № 1. С. 33–40.
  6. Третьякова И.В., Лезин Г.Т., Маркова Е.Г. и др. Продукт гена sbr у Drosophila melanogaster и его ортологи у дрожжей и человека // Генетика. 2001. Т.37. С.725–736.
  7. Якимова А.О., Голубкова Е.В., Саранцева С.В. и др. Дефекты структуры эллипсоидного тела и медуллы в нервных ганглиях и нарушения локомоции у мутантов по гену sbr (small bristles) Drosophila melanogaster // Генетика. 2018. Т. 54. № 6. С. 603–612. https://doi.org/10.7868/S0016675818060036
  8. Apitz H., Salecker I. A Challenge of Numbers and Diversity: Neurogenesis in the Drosophila Optic Lobe // J. Neurogenetics. 2014. V. 28. № (3-4). P. 233–249. https://doi.org/10.3109/01677063.2014.922558
  9. Ashburner M. Drosophila: a laboratory handbook and manual. Two volumes. N. Y.: Cold Spring Harbor Lab., 1989. 1331 p.
  10. Bachi A., Braun I.C., Rodrigues J.P. et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates // RNA. 2000. V. 6. P. 136–158.
  11. Braun I.C., Herold A., Rode M. et al. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15 // Mol. Cell Biol. 2002. V. 22. P. 5405–5418. https://doi.org/10.1128/MCB.22.15.5405-5418.2002
  12. Cammarata G.M., Bearce E., Lowery L.A. Cytoskeletal social networking in the growth cone: +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance // Cytoskeleton. 2016. V. 73. P. 461–476. https://doi.org/10.1002/cm.21272
  13. Chotard C., Salecker I. Glial cell development and function in the Drosophila visual system // Neuron Glia Biol. 2007. V. 3. P. 17–25. https://doi.org/10.1017/S1740925X07000592
  14. Drozd M., Bardoni B., Capovilla M. Modeling Fragile X Syndrome in Drosophila // Front. Mol. Neurosci. 2018. V. 11. P. 124. https://doi.org/10.3389/fnmol.2018.00124
  15. Dybas L.K., Harden K.K., Machnicki J.L. et al. Male fertility in Drosophila melanogaster: lesions of spermatogenesis associated with male sterile mutations of the vermilion region // J. Exp. Zool. 1983. V. 226. P. 293–302.
  16. Edwards T.N., Meinertzhagen I.A. The functional organization of glia in the adult brain of Drosophila and other insects // Prog. Neurobiol. 2010. V. 90. P. 471–497. https://doi.org/10.1016/j.pneurobio.2010.01.001
  17. Egger B., Chell J.M., Brand A.H. Insights into neural stem cell biology from flies // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008. V. 363. P. 39–56. https://doi.org/10.1098/rstb.2006.2011
  18. Fischbach K.F., Dittrich A.P.M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild type structure // Cell Tissue Res. 1989. V. 258. P. 441–475.
  19. Fischbach K.F., Hiesinger P.R. Optic lobe development // Adv. Exp. Med. Biol. 2008. V. 628. P. 115–136. https://doi.org/10.1007/978-0-387-78261-4_8
  20. FlyBase. 2024. http://flybase.org/reports/FBgn0003321.htm
  21. Fribourg S., Braun I.C., Izaurralde E. et al. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor // Mol. Cell. 2001. V. 8. P. 645–656. https://doi.org/10.1016/s1097-2765(01)00348-3
  22. Furman D.P., Bukharina T.A. How Drosophila melanogaster Forms its Mechanoreceptors // Curr. Genomics. 2008. V. 9. № 5. P. 312–23. https://doi.org/10.2174/138920208785133271
  23. Geer B.W., Lischwe T.D., Murphy K.G. Male fertility in Drosophila melanogaster: genetics of the vermilion region // J. Exp. Zool. 1983. V. 225. P. 107–118.
  24. Ginanova V., Golubkova E., Kliver S. et al. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility // Gene. 2016. V. 577. P. 153–160. http://dx.doi.org/10.1016/j.gene.2015.11.030
  25. Golubkova E.V., Markova E.G., Markov A.V. et al. Dm nxf1/sbr gene affects the formation of meiotic spindle in female Drosophila melanogaster // Chromosome Research. 2009. V. 17. № 7. P. 833–845. https://doi.org/10.1007/s10577-009-9046-x
  26. Gontang A.C., Hwal J.J., Mast J.D. et al. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system // Development. 2011. V. 138. P. 4899–4909. https://doi.org/10.1242/dev.069930
  27. Herold A., Suyama M., Rodrigues J.P. et al. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture // Mol. Cell Biol. 2000. V. 20. P. 8996–9008. https://doi.org/10.1128/MCB.20.23.8996-9008.2000
  28. Herold A., Klymenko T., Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila // RNA. 2001. V. 7. P. 1768–1780.
  29. Holt C.E., Schuman E.M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons // Neuron. 2013. V. 80. № 3. P. 648–57. https://doi.org/10.1016/j.neuron.2013.10.036
  30. Jan L.Y., Jan Y.N. Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos // Proc. Natl. Acad. Sci. USA. 1982. V. 79. № 8. P. 2700–2704. https://doi.org/10.1073/pnas.79.8.2700
  31. Katahira J., Dimitrova L., Imai Y. et al. NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export // Nucleic Acids Res. 2015. V. 43. P. 1894–1904. https://doi.org/10.1093/nar/gkv039
  32. Knoblich J.A. Mechanisms of asymmetric cell division during animal development // Curr. Opin. Cell. Biol. 1997. V. 9. P. 833–841. https://doi.org/10.1016/s0955-0674(97)80085-3
  33. Korey C.A., Wilkie G.S., Davis I. et al. small bristles is required for the morphogenesis of multiple tissues during Drosophila development // Genetics. 2001. V. 159. P. 1659–1670. https://doi.org/10.1093/genetics/159.4.1659
  34. Kuroda M.I., Hilfiker A., Lucchesi J.C. Dosage compensation in Drosophila — a model for the coordinate regulation of transcription // Genetics. 2016. V. 204. P. 435–450. https://doi.org/10.1534/genetics.115.185108
  35. Kurusu M., Katsuki T., Zinn K. et al. Developmental changes in expression, subcellular distribution, and function of Drosophila N-cadherin, guided by a cell-intrinsic program during neuronal differentiation. Dev. Biol. 2012, 366, 204–217.
  36. Mamon L.A., Ginanova V.R., Kliver S.F. et al. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton // Cytoskeleton. 2017. V. 74. № 4. P. 161–169. https://doi.org/10.1002/cm.21362
  37. Mamon L., Yakimova A., Kopytova D. et al. The RNA-Binding Protein SBR (Dm NXF1) Is Required for the Constitution of Medulla Boundaries in Drosophila melanogaster Optic Lobes // Cells. 2021. V. 10. P. 1144. https://doi.org/10.3390/cells10051144
  38. Meinertzhagen I.A., Hanson T.E. The development of the optic lobe. In: The Development of Drosophila melanogaster. Bate M., Martinez Arias A., Eds. Cold Spring Harbor Laboratory Press: New York. NY. USA. 1993. pp. 1363–1491.
  39. Meinertzhagen I.A., Sorra K.E. Synaptic organization in the fly’s optic lamina: Few cells, many synapses and divergent microcircuits // Prog. Brain Res. 2001. V. 131. P. 53–69. https://doi.org/10.1016/s0079-6123(01)31007-5
  40. Menon K.P., Carrillo R.A., Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction // Wiley Interdiscip. Rev. Dev. Biol. 2013. V. 2. № 5. P. 647–70. https://doi.org/10.1002/wdev.108
  41. Misra M., Edmund H., Ennis D. et al. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis // G3 (Bethesda). 2016. V. 6. № 8. P. 2397–405. https://doi.org/10.1534/g3.116.030353
  42. Missaire M., Hindges R. The role of cell adhesion molecules in visual circuit formation: From neurite outgrowth to maps and synaptic specificity // Dev. Neurobiol. 2015. V. 75. № 6. P. 569–583. https://doi.org/10.1002/dneu.22267
  43. Nériec N., Desplan C. From the Eye to the Brain: Development of the Drosophila Visual System // Curr. Top. Dev. Biol. 2016. V. 116. P. 247–271. https://doi.org/10.1016/bs.ctdb.2015.11.032
  44. Roegiers F., Jan Y.N. Asymmetric cell division // Curr. Opin. Cell. Biol. 2004. V. 16. P. 195–205. https://doi.org/10.1016/j.ceb.2004.02.010
  45. Paulk A., Millard S.S., van Swinderen B. Vision in Drosophila: seeing the world through a model’s eyes // Annu. Rev. Entomol. 2013. V. 58. P. 313–332. https://doi.org/10.1146/annurev-ento-120811-153715
  46. Rodal A.A., Motola-Barnes R.N., Littleton J.T. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth // J Neurosci. 2008. V. 28. № 33. P. 8316–8325. https://doi.org/10.1523/JNEUROSCI.2304-08.2008
  47. Sasaki Y. Local translation in growth cones and presynapses, two axonal compartments for local neuronal functions // Biomolecules. 2020. V. 10. № 5. P. 668. https://doi.org/10.3390/biom10050668
  48. Smith R., Taylor J.P. Dissection and imaging of active zones in the Drosophila neuromuscular junction // J. Vis. Exp. 2011. V. 50. P. 2676. https://doi.org/10.3791/2676
  49. Spindler S.R., Ortiz I., Fung S. et al. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding. And fasciculation in the developing larval brain // Dev. Biol. 2009. V. 334. P. 355–368. https://doi.org/10.1016/j.ydbio.2009.07.035
  50. Stephan R., Gohl C., Fleige A. et al. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila // Mol. Biol. Cell. 2011. V. 22. № 21. P. 4079–4092. https://doi.org/10.1091/mbc.E11-02-0121
  51. Tayler T.D., Robichaux M.B., Garrity P.A. Compartmentalization of visual centers in the Drosophila brain requires Slit and Robo proteins // Development. 2004. V. 131. № 23. P. 5935–5945. https://doi.org/10.1242/dev.01465
  52. Tomasi T., Hakeda-Suzuki S., Ohler S. et al. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions // Neuron. 2008. V. 57. № 5. P. 691–704. https://doi.org/10.1016/j.neuron.2008.01.012
  53. Trujilo-Cenóz O., Melamed J. Compound eye of dipterans: Anatomical basis for integration — An electron microscope study // J. Ultrastruct. Res. 1966. V. 16. P. 395–398.
  54. Valkov E., Dean J.C., Jani, D. et al. Structural basis for the assembly and disassembly of mRNA nuclear export complexes // Biochim. Biophys. Acta. 2012. V. 181. P. 578–592. https://doi.org/10.1016/j.bbagrm.2012.02.017
  55. Viphakone N., Hautbergue G.M., Walsh M. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export // Nat. Commun. 2012. V. 3. P. 1006. https://doi.org/10.1038/ncomms2005
  56. Wilkie G.S., Zimyanin V., Kirby R. et al. small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development // RNA. 2001. V. 7. P. 1781–1792.
  57. Yakimova A.O., Pugacheva O.M., Golubkova E.V. et al. Cytoplasmic localization of SBR (Dm NXF1) protein and its zonal distribution in the ganglia of Drosophila melanogaster larvae // Inver. Neuro. 2016. V. 16. № 3. P. 9. https://doi.org/10.1007/s10158-016-0192-5
  58. Yamaguchi Y., Miura M. Programmed cell death in neurodevelopment // Dev. Cell. 2015. V. 32. P. 478–490. https://doi.org/10.1016/j.devcel.2015.01.019
  59. Yoon D.W., Lee H., Seol W. et al. Tap: A novel protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation // Immunity. 1997. V. 6. P. 571–582. https://doi.org/10.1016/s1074-7613(00)80345-3
  60. Zhang B., Herman P.K. It is all about the process(ing): P-body granules and the regulation of signal transduction // Curr. Genet. 2020. V. 66. P. 73–77. https://doi.org/10.1007/s00294-019-01016-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the structure of the optic lobe of the Drosophila brain. a) imago stage; b) larval stage.

Baixar (391KB)
3. Fig. 2. Visual lobes of the brain of male D. melanogaster of different genotypes. a) brain of a male of the Oregon-R line; b) brain of a male carrying the sbr12 allele in heterozygote. Paraffin sections are stained with hematoxylin and eosin. Lo — lobula, Me — medulla, La — lamina. Scale: 100 µm.

Baixar (840KB)
4. Fig. 3. Terminals of R7–R8 photoreceptor axons in the optic lobe of the cephalic ganglion of Drosophila in adult males of different genotypes. Arrows point to the terminals of R7–R8 axons in the distal part of the medulla. Cell nuclei were stained with DAPI, and rhodopsin was visualized by detecting its autofluorescence. Bottom: enlarged image of a fragment of the medulla (highlighted in the upper image). In the medulla of the optic lobe in adult sbr12/Dp(1;Y)y+v+ males, arrows point to some randomly scattered terminals of photoreceptor axons. The axons did not form specific parallel rows in the distal part of the medulla and grew deep into the medulla and into the lobula. Scale bar: top: 50 μm; enlarged image: 25 μm.

Baixar (595KB)
5. Fig. 4. Localization of SBR protein in neuromuscular junctions of Drosophila larvae. a) DAPI staining reveals cell nuclei; b) antibodies to HRP label nerves and boutons of neuromuscular junctions (red); c) antibodies to SBR protein reflect colocalization of the protein with a marker of nerve cell membranes and a specific pattern of SBR protein distribution in muscle fibers (green); d) combined image. Scale bar: 20 µm.

Baixar (623KB)
6. Fig. 5. Estimation of the number of satellite boutons of neuromuscular junctions in third instar larvae of the wild type (wt) and the sbr12/Dp(1;Y)y+v+ genotype. A statistically significant difference was noted, Mann–Whitney criterion (P < 0.0001).

Baixar (54KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025