RNA-binding protein NXF1 is essential for the development of the nervous system of Drosophila melanogaster
- Autores: Golubkova E.V.1, Yakimova A.O.2, Akhromov K.V.1,3, Ryabova E.V.3, Grudkova D.M.1, Barabanova L.V.1, Sarantseva S.V3, Mamon L.A.1
-
Afiliações:
- St. Petersburg State University
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”
- Edição: Volume 56, Nº 1 (2025)
- Páginas: 24-35
- Seção: Original study articles
- URL: https://ter-arkhiv.ru/0475-1450/article/view/685004
- DOI: https://doi.org/10.31857/S0475145025010034
- EDN: https://elibrary.ru/KVDWDH
- ID: 685004
Citar
Resumo
In Drosophila melanogaster, as in all Opisthokonta, the evolutionary conserved protein NXF1 (Nuclear eXport Factor 1) is responsible for nuclear export of mRNA from the nucleus to the cytoplasm. Traditionally, it is thought that after leaving the nuclear pore, the NXF1 leaves the mRNP complex and returns to the nucleus. We have shown for the first time that in Drosophila the NXF1 protein presents in the cytoplasm of various cells, including nerve cells. The cytoplasmic localisation of the NXF1 indicates that nuclear export function is not the only function of this protein. The Nxf1 gene in Drosophila has the historically established name sbr (small bristles). A number of mutations in the sbr are characterised by dominant phenotypic effects. In particular, the sbr12 mutant allele leads to abnormalities in Drosophila brain formation. Characteristic morphological defects in the neuropils of the optic lobe suggest that the NXF1 (SBR) is involved in the regulation of the spatial architecture of the fly brain, including the formation of neuropil boundaries. The evolutionary conservatism of Nxf1 opens up the possibility of studying the role of the NXF1 protein in the development of the nervous system using Drosophila as a model.
Texto integral

Sobre autores
E. Golubkova
St. Petersburg State University
Autor responsável pela correspondência
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034
A. Yakimova
National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
Email: e.golubkova@spbu.ru
Rússia, Korolyova st. 4, Obninsk, 249036
K. Akhromov
St. Petersburg State University; Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034; Orlova roshcha 1, Gatchina, 188300
E. Ryabova
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”
Email: e.golubkova@spbu.ru
Rússia, Orlova roshcha 1, Gatchina, 188300
D. Grudkova
St. Petersburg State University
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034
L. Barabanova
St. Petersburg State University
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034
S. Sarantseva
Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of the National Research Centre “Kurchatov Institute”
Email: e.golubkova@spbu.ru
Rússia, Orlova roshcha 1, Gatchina, 188300
L. Mamon
St. Petersburg State University
Email: e.golubkova@spbu.ru
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034
Bibliografia
- Ацапкина А.А., Голубкова Е.В., Касаткина В.В. и др. Особенности сперматогенеза у Drosophila melanogaster: роль основного транспортного рецептора мРНК (DmNXF1) // Цитология. 2010. Т.52. № 7. С. 574–579.
- Голубкова Е.В., Ацапкина А.А., Мамон Л.А. Роль гена sbr (small bristles)/Dm nxf1 (nuclear export factor 1) в синцитиальные периоды развития у Drosophila melanogaster // Цитология. 2015. Т. 57. № 4. С. 294–304.
- Кисели Д. Практическая микротехника и гистохимия. Изд-во Академии наук Венгрии. Будапешт. 1962. 400 с.
- Никитина Е.А., Комарова А.В., Голубкова Е.В., Третьякова И.В., Мамон Л.А. Полудоминантное влияние мутации l(1)ts403 (sbr10) на нерасхождение половых хромосом в мейозе у самок Drosophila melanogaster при тепловом воздействии. // Генетика. 2003а. Т. 39. № 3. С. 269–275.
- Никитина Е.А., Токмачева Е.В., Савватеева-Попова Е.В. Тепловой шок в период развития центральных структур мозга дрозофилы: формирование памяти у мутанта l(1)ts403 Drosophila melanogaster // Генетика. 2003б. Т. 39. № 1. С. 33–40.
- Третьякова И.В., Лезин Г.Т., Маркова Е.Г. и др. Продукт гена sbr у Drosophila melanogaster и его ортологи у дрожжей и человека // Генетика. 2001. Т.37. С.725–736.
- Якимова А.О., Голубкова Е.В., Саранцева С.В. и др. Дефекты структуры эллипсоидного тела и медуллы в нервных ганглиях и нарушения локомоции у мутантов по гену sbr (small bristles) Drosophila melanogaster // Генетика. 2018. Т. 54. № 6. С. 603–612. https://doi.org/10.7868/S0016675818060036
- Apitz H., Salecker I. A Challenge of Numbers and Diversity: Neurogenesis in the Drosophila Optic Lobe // J. Neurogenetics. 2014. V. 28. № (3-4). P. 233–249. https://doi.org/10.3109/01677063.2014.922558
- Ashburner M. Drosophila: a laboratory handbook and manual. Two volumes. N. Y.: Cold Spring Harbor Lab., 1989. 1331 p.
- Bachi A., Braun I.C., Rodrigues J.P. et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates // RNA. 2000. V. 6. P. 136–158.
- Braun I.C., Herold A., Rode M. et al. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15 // Mol. Cell Biol. 2002. V. 22. P. 5405–5418. https://doi.org/10.1128/MCB.22.15.5405-5418.2002
- Cammarata G.M., Bearce E., Lowery L.A. Cytoskeletal social networking in the growth cone: +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance // Cytoskeleton. 2016. V. 73. P. 461–476. https://doi.org/10.1002/cm.21272
- Chotard C., Salecker I. Glial cell development and function in the Drosophila visual system // Neuron Glia Biol. 2007. V. 3. P. 17–25. https://doi.org/10.1017/S1740925X07000592
- Drozd M., Bardoni B., Capovilla M. Modeling Fragile X Syndrome in Drosophila // Front. Mol. Neurosci. 2018. V. 11. P. 124. https://doi.org/10.3389/fnmol.2018.00124
- Dybas L.K., Harden K.K., Machnicki J.L. et al. Male fertility in Drosophila melanogaster: lesions of spermatogenesis associated with male sterile mutations of the vermilion region // J. Exp. Zool. 1983. V. 226. P. 293–302.
- Edwards T.N., Meinertzhagen I.A. The functional organization of glia in the adult brain of Drosophila and other insects // Prog. Neurobiol. 2010. V. 90. P. 471–497. https://doi.org/10.1016/j.pneurobio.2010.01.001
- Egger B., Chell J.M., Brand A.H. Insights into neural stem cell biology from flies // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008. V. 363. P. 39–56. https://doi.org/10.1098/rstb.2006.2011
- Fischbach K.F., Dittrich A.P.M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild type structure // Cell Tissue Res. 1989. V. 258. P. 441–475.
- Fischbach K.F., Hiesinger P.R. Optic lobe development // Adv. Exp. Med. Biol. 2008. V. 628. P. 115–136. https://doi.org/10.1007/978-0-387-78261-4_8
- FlyBase. 2024. http://flybase.org/reports/FBgn0003321.htm
- Fribourg S., Braun I.C., Izaurralde E. et al. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor // Mol. Cell. 2001. V. 8. P. 645–656. https://doi.org/10.1016/s1097-2765(01)00348-3
- Furman D.P., Bukharina T.A. How Drosophila melanogaster Forms its Mechanoreceptors // Curr. Genomics. 2008. V. 9. № 5. P. 312–23. https://doi.org/10.2174/138920208785133271
- Geer B.W., Lischwe T.D., Murphy K.G. Male fertility in Drosophila melanogaster: genetics of the vermilion region // J. Exp. Zool. 1983. V. 225. P. 107–118.
- Ginanova V., Golubkova E., Kliver S. et al. Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility // Gene. 2016. V. 577. P. 153–160. http://dx.doi.org/10.1016/j.gene.2015.11.030
- Golubkova E.V., Markova E.G., Markov A.V. et al. Dm nxf1/sbr gene affects the formation of meiotic spindle in female Drosophila melanogaster // Chromosome Research. 2009. V. 17. № 7. P. 833–845. https://doi.org/10.1007/s10577-009-9046-x
- Gontang A.C., Hwal J.J., Mast J.D. et al. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system // Development. 2011. V. 138. P. 4899–4909. https://doi.org/10.1242/dev.069930
- Herold A., Suyama M., Rodrigues J.P. et al. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture // Mol. Cell Biol. 2000. V. 20. P. 8996–9008. https://doi.org/10.1128/MCB.20.23.8996-9008.2000
- Herold A., Klymenko T., Izaurralde E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila // RNA. 2001. V. 7. P. 1768–1780.
- Holt C.E., Schuman E.M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons // Neuron. 2013. V. 80. № 3. P. 648–57. https://doi.org/10.1016/j.neuron.2013.10.036
- Jan L.Y., Jan Y.N. Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos // Proc. Natl. Acad. Sci. USA. 1982. V. 79. № 8. P. 2700–2704. https://doi.org/10.1073/pnas.79.8.2700
- Katahira J., Dimitrova L., Imai Y. et al. NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export // Nucleic Acids Res. 2015. V. 43. P. 1894–1904. https://doi.org/10.1093/nar/gkv039
- Knoblich J.A. Mechanisms of asymmetric cell division during animal development // Curr. Opin. Cell. Biol. 1997. V. 9. P. 833–841. https://doi.org/10.1016/s0955-0674(97)80085-3
- Korey C.A., Wilkie G.S., Davis I. et al. small bristles is required for the morphogenesis of multiple tissues during Drosophila development // Genetics. 2001. V. 159. P. 1659–1670. https://doi.org/10.1093/genetics/159.4.1659
- Kuroda M.I., Hilfiker A., Lucchesi J.C. Dosage compensation in Drosophila — a model for the coordinate regulation of transcription // Genetics. 2016. V. 204. P. 435–450. https://doi.org/10.1534/genetics.115.185108
- Kurusu M., Katsuki T., Zinn K. et al. Developmental changes in expression, subcellular distribution, and function of Drosophila N-cadherin, guided by a cell-intrinsic program during neuronal differentiation. Dev. Biol. 2012, 366, 204–217.
- Mamon L.A., Ginanova V.R., Kliver S.F. et al. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton // Cytoskeleton. 2017. V. 74. № 4. P. 161–169. https://doi.org/10.1002/cm.21362
- Mamon L., Yakimova A., Kopytova D. et al. The RNA-Binding Protein SBR (Dm NXF1) Is Required for the Constitution of Medulla Boundaries in Drosophila melanogaster Optic Lobes // Cells. 2021. V. 10. P. 1144. https://doi.org/10.3390/cells10051144
- Meinertzhagen I.A., Hanson T.E. The development of the optic lobe. In: The Development of Drosophila melanogaster. Bate M., Martinez Arias A., Eds. Cold Spring Harbor Laboratory Press: New York. NY. USA. 1993. pp. 1363–1491.
- Meinertzhagen I.A., Sorra K.E. Synaptic organization in the fly’s optic lamina: Few cells, many synapses and divergent microcircuits // Prog. Brain Res. 2001. V. 131. P. 53–69. https://doi.org/10.1016/s0079-6123(01)31007-5
- Menon K.P., Carrillo R.A., Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction // Wiley Interdiscip. Rev. Dev. Biol. 2013. V. 2. № 5. P. 647–70. https://doi.org/10.1002/wdev.108
- Misra M., Edmund H., Ennis D. et al. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis // G3 (Bethesda). 2016. V. 6. № 8. P. 2397–405. https://doi.org/10.1534/g3.116.030353
- Missaire M., Hindges R. The role of cell adhesion molecules in visual circuit formation: From neurite outgrowth to maps and synaptic specificity // Dev. Neurobiol. 2015. V. 75. № 6. P. 569–583. https://doi.org/10.1002/dneu.22267
- Nériec N., Desplan C. From the Eye to the Brain: Development of the Drosophila Visual System // Curr. Top. Dev. Biol. 2016. V. 116. P. 247–271. https://doi.org/10.1016/bs.ctdb.2015.11.032
- Roegiers F., Jan Y.N. Asymmetric cell division // Curr. Opin. Cell. Biol. 2004. V. 16. P. 195–205. https://doi.org/10.1016/j.ceb.2004.02.010
- Paulk A., Millard S.S., van Swinderen B. Vision in Drosophila: seeing the world through a model’s eyes // Annu. Rev. Entomol. 2013. V. 58. P. 313–332. https://doi.org/10.1146/annurev-ento-120811-153715
- Rodal A.A., Motola-Barnes R.N., Littleton J.T. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth // J Neurosci. 2008. V. 28. № 33. P. 8316–8325. https://doi.org/10.1523/JNEUROSCI.2304-08.2008
- Sasaki Y. Local translation in growth cones and presynapses, two axonal compartments for local neuronal functions // Biomolecules. 2020. V. 10. № 5. P. 668. https://doi.org/10.3390/biom10050668
- Smith R., Taylor J.P. Dissection and imaging of active zones in the Drosophila neuromuscular junction // J. Vis. Exp. 2011. V. 50. P. 2676. https://doi.org/10.3791/2676
- Spindler S.R., Ortiz I., Fung S. et al. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding. And fasciculation in the developing larval brain // Dev. Biol. 2009. V. 334. P. 355–368. https://doi.org/10.1016/j.ydbio.2009.07.035
- Stephan R., Gohl C., Fleige A. et al. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila // Mol. Biol. Cell. 2011. V. 22. № 21. P. 4079–4092. https://doi.org/10.1091/mbc.E11-02-0121
- Tayler T.D., Robichaux M.B., Garrity P.A. Compartmentalization of visual centers in the Drosophila brain requires Slit and Robo proteins // Development. 2004. V. 131. № 23. P. 5935–5945. https://doi.org/10.1242/dev.01465
- Tomasi T., Hakeda-Suzuki S., Ohler S. et al. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions // Neuron. 2008. V. 57. № 5. P. 691–704. https://doi.org/10.1016/j.neuron.2008.01.012
- Trujilo-Cenóz O., Melamed J. Compound eye of dipterans: Anatomical basis for integration — An electron microscope study // J. Ultrastruct. Res. 1966. V. 16. P. 395–398.
- Valkov E., Dean J.C., Jani, D. et al. Structural basis for the assembly and disassembly of mRNA nuclear export complexes // Biochim. Biophys. Acta. 2012. V. 181. P. 578–592. https://doi.org/10.1016/j.bbagrm.2012.02.017
- Viphakone N., Hautbergue G.M., Walsh M. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export // Nat. Commun. 2012. V. 3. P. 1006. https://doi.org/10.1038/ncomms2005
- Wilkie G.S., Zimyanin V., Kirby R. et al. small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development // RNA. 2001. V. 7. P. 1781–1792.
- Yakimova A.O., Pugacheva O.M., Golubkova E.V. et al. Cytoplasmic localization of SBR (Dm NXF1) protein and its zonal distribution in the ganglia of Drosophila melanogaster larvae // Inver. Neuro. 2016. V. 16. № 3. P. 9. https://doi.org/10.1007/s10158-016-0192-5
- Yamaguchi Y., Miura M. Programmed cell death in neurodevelopment // Dev. Cell. 2015. V. 32. P. 478–490. https://doi.org/10.1016/j.devcel.2015.01.019
- Yoon D.W., Lee H., Seol W. et al. Tap: A novel protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation // Immunity. 1997. V. 6. P. 571–582. https://doi.org/10.1016/s1074-7613(00)80345-3
- Zhang B., Herman P.K. It is all about the process(ing): P-body granules and the regulation of signal transduction // Curr. Genet. 2020. V. 66. P. 73–77. https://doi.org/10.1007/s00294-019-01016-3
Arquivos suplementares
