Alumina in Active Center Formation of Cobalt Catalysts for Fischer–Tropsch Synthesis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mini-review is devoted to the role of alumina as a support or a binder in cobalt catalysts for Fischer–Tropsch synthesis, in particular the role in the formation of active centers. Some peculiarities of the physico-chemical properties of alumina have been identified, which may be useful in the development of new catalysts. The possibilities for improving catalytic properties by optimizing the shape and size of particles, as well as the degree of reduction of Co when using alumina as a support or a support component are demonstrated. Bibliography: 75 references

Texto integral

Acesso é fechado

Sobre autores

L. Sineva

NRC “KURCHATOV INSTITUTE” — TISNCM

Autor responsável pela correspondência
Email: sinevalv@tisnum.ru
Rússia, Tsentralnaya st., 7a, Moscow, Troistk, 108840

E. Asalieva

NRC “KURCHATOV INSTITUTE” — TISNCM

Email: sinevalv@tisnum.ru
Rússia, Tsentralnaya st., 7a, Moscow, Troistk, 108840

V. Mordkovich

NRC “KURCHATOV INSTITUTE” — TISNCM

Email: sinevalv@tisnum.ru
Rússia, Tsentralnaya st., 7a, Moscow, Troistk, 108840

Bibliografia

  1. Cheng K., Kang J., King D.L., Subramanian V., Zhou C., Zhang Q., Wang Y. // Adv. Catal. 2017. V. 60. P. 125. doi: 10.1016/bs.acat.2017.09.003
  2. Senecal P., Jacques S.D.M., Michiell M.D., Kimber S.A.J., Vamvakeros A., Odarchenko Y., Lezcano-Gonzalez I., Paterson J., Ferguson E., Beale A.M. // ACS Catal. 2017. V. 7. № 4. P. 2284.
  3. Tsakoumis N.E., Voronov A., Ronning M., van Beek W., Borg O., Rytter E., Holmen A. // J. Catal. 2012. V. 291. P. 138.
  4. Fischer N., Clapham B., Feltes T., Claeys M. // ACS Catal. 2015. V. 5. № 1. P. 113.
  5. Sadeqzadeh M., Karaca H., Safonova O.V., Fongarland P., Chambrey S., Roussel P., Griboval-Constant A., Lacroix M., Curulla-Ferré D., Luck F., Khodakov A.Y. // Catal. Today. 2011. V. 164. P. 62.
  6. Cats K.H., Gonzalez-Jimenez I. D., Liu Y., Nelson J., van Campen D., Meirer F., van der Eerden A.M.J., de Groot F.M.F., Andrews J.C., Weckhuysen B.M. // Chem. Commun. 2013. V. 49. № 41. P. 4622.
  7. Shiba N.C., Liu X., Mao H., Qian X., Hildebrandt D., Yao Y. // Fuel. 2022 V. 320. Art. 123939.
  8. Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H. // Appl. Catal. A: Gen. 2002. V. 233. P. 263.
  9. Chen W., Lin T., Dai Y., An Y., Yu F., Zhong L., Li S., Sun Y. // Catal. Today. 2018. V. 311. P. 8.
  10. Yang N., Bent S. F. // J. Catal. 2017. V. 351. P. 49.
  11. Cheng Q., Liu Y., Lyu S., Tian Y., Ma Q., Li X. // Chin. J. Chem. Eng. 2021. V. 35. P. 220.
  12. Munirathinam R., Minh D.P., Nzihou A. // Ind. Eng. Chem. Res. 2018. V. 57. № 48 P. 16137.
  13. Nikolopoulos N., Wickramasinghe A., Whiting G.T., Weckhuysen B.M. // Catal. Sci. Technol. 2023. V. 13. № 3. P. 862.
  14. Lakiss L., Gilson J.-P., Valtchev V., Mintova S., Vicente A., Vimont A., Bedard R., Abdo S., Bricker J. // Micropor. Mesopor. Mater. 2020. V. 299. Art. 110114.
  15. Hargreaves J.S.J., Munnoch A.L. // Catal. Sci. Technol. 2013. V. 3. P. 1165.
  16. Shihabi D.S., Garwood W.E., Chu P., Miale J. N., Lago R.M., Chu C.T.-W., Chang C. D. // J. Catal. 1985. V. 93. P. 471.
  17. Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J., Marshall C.L. // Appl. Catal. A: Gen. 2007. V. 333. P. 177.
  18. Shiba N.C., Liu X., Yao Y. // Reactions. 2023. V. 4. P. 420.
  19. Lögdberg S., Yang J., Lualdi M., Walmsley J.C., Järås S., Boutonnet M., Blekkan E.A., Rytter E., Holmen A. // J. Catal. A: Gen. 2017. V. 352. P. 515.
  20. Shiba N.C., Liu X., Hildebrandt D., Yao Y. // Reactions. 2021. V. 2. P. 258.
  21. Braconnier L., Landrivon E., Clémençon I., Legens C., Diehl F., Schuurman Y. // Catal. Today. 2013. V. 215. P. 18.
  22. Storsæter S., Tøtdal B., Walmsley J.C., Tanem B.S., Holmen A. // J. Catal. 2005. V. 236. № 1. P. 139.
  23. ten Have I.C., Weckhuysen B.M. // Chem. Catal. 2021. V. 1. № 2. P. 339.
  24. Liu J.-X., Wang P., Xu W., Hensen E.J.M. // Engineering. 2017. V. 3. № 4. P. 467.
  25. Kitakami O., Sato H., Shimada Y., Sato F., Tanaka M. // Phys. Rev. B. 1997. V. 56. № 21. P. 13849.
  26. Fischer N., van Steen E., Claeys M. // Catal. Today. 2011. V. 171. № 1. P. 174.
  27. Lyu S., Wang L., Zhang J., Liu C., Sun J., Peng B., Wang Y., Rappé K.G., Zhang Y., Li J., Nie L. // ACS Catal. 2018. V. 8. P. 7787.
  28. Liu Y., Chen C., Hou B., Jia L., Wang J., Ma Z., Wang Q., Li D. // Mol. Catal. 2023. V. 544. Art. 113184.
  29. Gnanamani M.K., Jacobs G., Shafer W.D., Davis B.H. // Catal. Today. 2013. V. 215. P. 13.
  30. Du H., Jiang M., Zhu H., Huang C., Zhao Z., Dong W., Lu W., Liu T., Zhang Z.C., Ding Y. // Fuel. 2021. V. 292. Art. 1202443.
  31. Liu J., Su H., Sun D., Zhang B., Li W. // J. Am. Chem. Soc. 2013. V. 135. № 44. P. 16284.
  32. Patanou E., Tsakoumis N.E., Myrstad R., Blekkan E.A. // Appl. Catal. A: Gen. 2018. V. 549. P. 280.
  33. van Helden P., Ciobîcă I.M., Coetzer R.L.J. // Catal. Today. 2016. V. 261. P. 48.
  34. Ma C., Yun Y., Zhang T., Suo H., Yan L., Shen X., Li Y., Yang Y. // ChemCatChem. 2021. V. 13. P. 4350.
  35. Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., Griboval-Constant A., Lacroix M., Khodakov A.Y. // J. Catal. 2011. V. 277. № 1. P. 14.
  36. Булавченко О.А., Черепанова С.В. Малахов В.В., Довлитова Л.С. Ищенко А.В., Цыбуля С.В. // Кинетика и катализ. 2009. Т. 50. № 2. C. 205.
  37. Кобозев Н. И. // Ж. физ. химии. 1939. Т. 13. С. 1.
  38. Weststrate C.J., Mahmoodinia M., Farstad M.H., Svenum I.-H., Strømsheim M.D., Niemantsverdriet J.W., Venvik H.J. // Catal. Today. 2020. V. 342. P. 124.
  39. Tuxen A., Carenco S., Chintapalli M., Chuang C.-H., Escudero C., Pach E., Jiang P., Borondics F., Beberwyck B., Alivisatos A.P., Thornton G., Pong W.-F., Guo J., Perez R., Besenbacher F., Salmeron M. // J. Am. Chem. Soc. 2013. V. 135. № 6. P. 2273.
  40. Chen C., Wang Q., Wang G., Hou B., Jia L., Li D. // J. Phys. Chem. C. 2016. V. 120. № 17. P. 9132.
  41. Liu S., Li Y.-W., Wang J., Jiao H. // Catal. Sci. Technol. 2016. V. 6. P. 8336.
  42. Geerlings J.J.C., Zonnevylle M.C., de Groot C.P.M. // Surf. Sci. 1991. V. 241. № 3. P. 315.
  43. Ducreux O., Rebours B., Lynch J., Roy-Auberger M., Bazin D. // Oil Gas Sci. Technol. – Rev. IFP. 2009. V. 64. № 1. P. 49.
  44. Gnanamani M.K., Jacobs G., Graham U.M., Ribeiro M.C., Noronha F.B., Shafer W.D., Davis B.H. // Catal. Today. 2016. V. 261. P. 40.
  45. Pei Y.P., Liu J.X., Zhao Y.H., Ding Y.J., Liu T., Dong W. Da, Zhu H.J., Su H.Y., Yan L., Li J.L. // ACS Catal. 2015. V. 5. P. 3620.
  46. Qi Z., Chen L., Zhang S., Su J., Somorjai G.A. // Appl. Catal. A: Gen. 2020. V. 602, P. 117701.
  47. Fang X., Liu B., Cao K., Yang P., Zhao Q., Jiang F., Xu Y., Chen R., Liu X. // ACS Catal. 2020. V. 10. № 4. P. 2799.
  48. Lee W.H., Bartholomew C.H. // J. Catal. 1989. V. 120. № 1. P. 256.
  49. Lapidus A., Krylova A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1992. V. 80. № 1. P. 1.
  50. Shiba N.C., Yao Y., Forbes R.P., Okoye-Chine C.G., Liu X., Hildebrandt D. // Fuel Proc. Technol. 2021. V. 216. Art. 106781.
  51. Sexton B.A., Hughes A.E., Turney T.W. // J. Catal. 1986. V. 97. P. 390.
  52. Cherepanova S.V., Koemets E.G., Gerasimov E.Yu., Simentsova I.I., Bulavchenko O.A. // Materials. 2023. V. 16. P. 6216.
  53. Khodakov A.Y., Lynch J., Bazin D., Rebours B., Zanier N., Moisson B., Chaumette P. // J. Catal. 1997. V. 168 P. 16.
  54. Puskas I., Fleisch T.H., Full P.R., Kaduk J.A., Marshall C.L., Meyers B.L. // Appl. Catal. A: Gen. 2006. V. 311. P. 146.
  55. Li C., Wong L., Tang L., Scarlett N.V.Y., Chiang K., Patel J., Burke N., Sage V. // Appl. Catal. A: Gen. 2017. V. 537. P. 1.
  56. Chu W., Chernavskii P.A., Gengembre L., Pankina G.A., Fongarland P., Khodakov A.Y. // J. Catal. 2007. V. 252. № 2. P. 215.
  57. Jacobs G., Ma W., Gao P., Todic B., Bhatelia T., Bukur D.B., Davis B.H. // Catal. Today. 2013. V. 214. P. 100.
  58. Lapidus A., Krylova A., Kazanskii V., Borovkov V., Zaitsev A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1991. V. 73. № 1. P. 65.
  59. Borg Ø., Eri S., Blekkan E.A., Storsæter S., Wigum H., Rytter E., Holmen A. // J. Catal. 2007. V. 248. № 1. P. 89.
  60. Rane S., Borg Ø., Rytter E., Holmen A. // Appl. Catal. A: Gen. 2012. V. 437. P. 10.
  61. Хасин А.А., Юрьева Т.М., Пармон В.Н. // Доклады Академии наук. 1999. Т. 367. № 3. С. 367.
  62. Clarkson J., Ellis P.R., Humble R., Kelly G.J., McKenna M., West J. // Appl. Catal. A: Gen. 2018. V. 550. P. 28.
  63. Shimura K., Miyazawa T., Hanaoka T., Hirata S. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 22.
  64. Park J.-Y., Lee Y.-J., Karandikar P.R., Jun K.-W., Ha K.-S., Park H.-G. // Appl. Catal. A: Gen. 2012. V. 411–412. P. 15.
  65. Ji L., Lin J., Zeng H.C. // J. Phys. Chem. B. 2000. V. 104. № 8. P. 1783.
  66. Rahmati M., Huang B., Mortensen M.K., Keyvanloo K., Fletcher T.H., Woodfield B.F., Hecker W.C., Argyle M.D. // J. Catal. 2018. V. 359. P. 92.
  67. Bolt P.H., Habraken F.H.P.M., Geus J.W. // J. Solid State Chem. 1998. V. 135. № 1. P. 59.
  68. Zhang J., Chen J., Ren J., Sun Y. // Appl. Catal. A: Gen. 2003 V. 243. № 1. P. 121.
  69. Paredes-Nunez A., Lorito D., Guilhaume N., Mirodatos C., Schuurman Y., Meunier F.C. // Catal. Today. 2015. V. 242. P. 178.
  70. Szanyi J., Kwak J.H. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 15117.
  71. Shopska M.G., Shtereva I.Z., Kolev H.G., Tenchev K.K., Todorova S.Z., Kadinov G.B. // Croat. Chem. Acta. 2020. V. 93. № 2. P. 121.
  72. Weilach C., Spiel C., Föttinger K., Rupprechter G. // Surf. Sci. 2011. V. 605. № 15–16. P. 1503.
  73. Liu Y., Jia L., Hou B., Sun D., Li D. // Appl. Catal. A: Gen. 2017. V. 530. P. 30.
  74. Wang J., Wang J., Huang X., Chen C., Ma Z., Jia L., Hou B., Li D. // Int. J. Hydrogen Energy. 2018. V. 43. № 29. Р. 13122.
  75. Fratalocchi L., Visconti C.G, Lietti L. // Appl. Catal. A: Gen. 2020. V. 595. Art. 117514.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of the relationship between the properties of the catalyst, what they are provided with, and the indicators of TFT.

Baixar (355KB)
3. Fig. 2. Dependence of the degree of reduction and the size of Co particles on its content and type of carrier (diagrams are constructed according to the data of [8]).

Baixar (225KB)
4. Fig. 3. Model of the Co/Al2O3 catalyst surface (the representation does not pretend to correspond to the actual distribution and scale).

Baixar (274KB)