Oxygen-ion and proton transport in Y3+-doped hexagonal perovskite Ba7In6Al2O19

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, the thermal and electrical properties of the Y3+-doped Ba7In5.9Y0.1Al2O19 phase, characterized by a hexagonal perovskite structure (a = 5.935(7) Å, c = 37.736(8) Å), were studied. It has been established that the phase is capable of incorporating protons and exhibiting proton conductivity. The introduction of an isovalent dopant, yttrium, led to an increase in the concentration of protons (up to the limiting values of Ba7In5.9Y0.1Al2O19 ·0.55H2O), as a result of an increase in the unit cell volume and, accordingly, the free space for the placement of OH-groups in an oxygen-deficient block containing coordination-unsaturated polyhedra [BaO9]. Isovalent doping led to an increase in the oxygen-ion conductivity, which is due to an increase in interatomic distances and a decrease in the migration activation energy. In a humid atmosphere (pH2O = = 1.92·10–2 atm), the Ba7In5.9Y0.1Al2O19 phase exhibited higher values of proton conductivity compared to the matrix compound Ba7In6Al2O19 and below 500°C it was characterized by dominant proton transport both in air and in a wide range of pO2 (10–18–0.21 atm).

全文:

受限制的访问

作者简介

I. Animitsa

Ural Federal University named after the First President of Russia B. N. Yeltsin

编辑信件的主要联系方式.
Email: Irina.аnimitsa@urfu.ru
俄罗斯联邦, Yekaterinburg

R. Andreev

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: Irina.аnimitsa@urfu.ru
俄罗斯联邦, Yekaterinburg

D. Korona

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: Irina.аnimitsa@urfu.ru
俄罗斯联邦, Yekaterinburg

A. Gilev

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: Irina.аnimitsa@urfu.ru
俄罗斯联邦, Yekaterinburg

S. Nokhrin

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: Irina.аnimitsa@urfu.ru
俄罗斯联邦, Yekaterinburg

参考

  1. Takahashi, T. and Iwahara, H., Solid-state ionics: Protonic conduction in perovskite-type oxide solid solution, Rev. Chem. Mineral, 1980, vol. 17, no. 4, p. 243.
  2. Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ionics, 1981, vol. 3, no. 4, p. 359.
  3. Uchida, H., Maeda, N., and Iwahara, H., Steam concentration cell using a high temperature type proton conductive solid electrolyte, J. Appl. Chem., 1982, vol. 12, p. 645.
  4. Iwahara, H., Uchida, H., and Maeda, N., High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes, J. Power Sources, 1982, vol. 7, no. 3, p. 293.
  5. Danilov, N., Lyagaeva, J., Vdovin, G., and Medvedev, D., Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes, Appl. Energy, 2019, vol. 237, p. 924.
  6. Tarutin, A., Kasyanova, A., Lyagaeva, J., Vdovin, G., and Medvedev, D., Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes, J. Energy Chem., 2020, vol. 40, p. 65.
  7. Medvedev, D.A., Current drawbacks of proton–conducting ceramic materials: How to overcome them for real electrochemical purposes, Curr. Opin. Green Sustain. Chem., 2021, vol. 32, p. 100549.
  8. Ярославцев, А. Б. Основные направления разработки и исследования твердых электролитов. Успехи химии. 2016. T. 85. № 11. С. 125. [Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, no. 11, p. 1255.]
  9. Kochetova, N., Animitsa, I., Medvedev, D., Demin, A., and Tsiakaras, P., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 2016, vol. 6, p. 73222.
  10. Hyodo, J., Tsujikawa, K., Shiga, M., Okuyama, Y., and Yamazaki, Y., Accelerated discovery of proton-conducting perovskite oxide by capturing physicochemical fundamentals of hydration, ACS Energy Lett., 2021, vol. 6, no. 8, p. 2985.
  11. Zhou, Y., Shiraiwa, M., Nagao, M., Fujii, K., Tanaka, I., Yashima, M., Baque, L., Basbus, J., Mogni, L., and Skinner, S., Protonic conduction in the BaNdInO4 structure achieved by acceptor doping, Chem. Mater., 2021, vol. 33, p. 2139.
  12. Shiraiwa, M., Kido, T., Fujii, K., and Yashima, M., High-temperature proton conductors based on the (110) layered perovskite BaNdScO4, J. Mat. Chem. A, 2021, vol. 9, p. 8607.
  13. Troncoso, L., Arce, M.D., Fernandez-Diaz, M.T., Mogni, L.V., and Alonso, J.A., Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8–xBaxInO4+d, New J. Chem., 2019, vol. 43, p. 6087.
  14. Tarasova, N., Animitsa, I., Galisheva, A., and Korona, D., Incorporation and conduction of protons in Ca, Sr, Ba-doped BaLaInO4 with Ruddlesden-Popper Structure, Materials, 2019, vol. 12, p. 1668.
  15. Tarasova, N., Animitsa, I., Galisheva, A., and Pryakhina, V., Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden-Popper structure, Solid State Sci., 2020, vol. 101, p. 106121.
  16. Tarasova, N., Animitsa, I., and Galisheva, A., Electrical properties of new protonic conductors Ba1+хLa1–хInO4–0.5х with Ruddlesden-Popper structure, J. Solid State Electrochem., 2020, vol. 24, p. 1497.
  17. Tarasova, N., Galisheva, A., and Animitsa, I., Improvement of oxygen-ionic and protonic conductivity of BaLaInO4 through Ti doping, Ionics, 2020, vol. 26, p. 5075.
  18. Tarasova, N., Galisheva, A., and Animitsa, I., Ba2+/Ti4+– co-doped layered perovskite BаLaInO4: the structure and ionic (O2–, H+) conductivity, Intern. J. Hydrogen Energy, 2021, vol. 46, p. 16868.
  19. Тарасова, Н.А., Галишева, А.О., Анимица, И.Е., Корона, Д. В. Гидратация и состояние кислород-водородных групп в сложном оксиде BaLaIn0.9Nb0.1O4.1 со структурой Раддлесдена–Поппера. Журн. физ. химии. 2020. Т. 94. № 4. C. 590. [Tarasova, N., Galisheva, A., Animitsa, I., and Korona, D., Hydration and the state of oxygen–hydrogen groups in the complex oxide BaLaIn0.9Nb0.1O4.1 with the Ruddlesden–Popper structure, Russ. J. Phys. Chem. A, 2020, vol. 94, p. 818.]
  20. Тарасова, Н.А., Галишева, А.О., Анимица, И.Е., Дмитриева, А. А. Влияние донорного допирования на ионный (O2–, H+) транспорт в новых сложных оксидах BaLaIn1–xNbxO4+x со структурой Раддлесдена–Поппера. Электрохимия. 2021. Т. 57. С. 564. [Tarasova, N., Galisheva, A., Animitsa, I., and Dmitrieva, A., The Effect of donor doping on the ionic (O2–, H+) transport in novel complex oxides BaLaIn1–xNbxO4+x with the Ruddlesden–Popper structure, Russ. J. Electrochem., 2021, vol. 57, p. 962.]
  21. Murakami, T., Hester, J., and Yashima, M., High proton conductivity in Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide with intrinsically oxygen-deficient layers, J. Am. Chem. Soc., 2020, vol. 142, p. 11653.
  22. Shpanchenko, R.V., Abakumov, A.M., Antipov, E.V., Nistor, L., Van Tendeloo, G., and Amelinckx, S., Structural study of the new complex oxides Ba5–ySryR2–xAl2Zr1+xO13+x/2 (R = Gd-Lu, Y, Sc), J. Solid State Chem., 1995, vol. 118, p. 180.
  23. Matsuzaki, K., Saito, K., Ikeda, Y., Nambu, Y., and Yashima, M., High Proton Conduction in the Octahedral Layers of Fully Hydrated Hexagonal Perovskite-Related Oxides, J. Amer. Chem. Soc., 2024, vol. 146, p. 18544.
  24. Andreev, R., Korona, D., Anokhina, I., and Animitsa, I., Proton and oxygen-ion conductivities of hexagonal perovskite Ba5In2Al2ZrO13, Materials, 2022, vol. 15, no. 11, p. 3944.
  25. Андреев, Р.Д., Анохина, И.А., Корона, Д.В., Гилев, А.Р., Анимица, И. Е. Транспортные свойства In3+- и Y3+-допированного гексагонального перовскита Ba5In2Al2ZrO13. Электрохимия. 2023. Т. 59. С. 143. [Andreev, R.D., Anokhina, I.A., Korona, D.V., Gilev, A.R., and Animitsa, I.E., Transport properties of In3+- and Y3+-doped hexagonal perovskite Ba5In2Al2ZrO13, Russ. J. Electrochem., 2023, vol. 59, p. 190.]
  26. Andreev, R.D. and Animitsa, I.E., Protonic transport in the novel complex oxide Ba5Y0.5In1.5Al2ZrO13, Ionics, 2023, vol. 29, no. 11, p. 4647.
  27. Andreev, R.D., Korona, D.V., Vlasov, M.I., and Animitsa, I.E., Protonic ceramics Ba5In2–xYxAl2ZrO13 with the perovskite-related hexagonal structure for solid oxide fuel cells: synthesis, optical band gap and transport properties, Ceramics International, 2024. https://doi.org/10.1016/j.ceramint.2024.04.227
  28. Andreev, R. and Animitsa I., Transport properties of intergrowth structures Ba5In2Al2ZrO13 and Ba7In6Al2O19, Appl. Sci., 2023, vol. 13, no. 6, p. 3978.
  29. Shannon, R., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1976, vol. 32, p. 751.
  30. Tarasova, N. and Animitsa, I., Materials AIILnInO4 with Ruddlesden-Popper structure for electrochemical applications: relationship between ion (oxygen-ion, proton) conductivity, water uptake, and structural changes, Materials, 2022, vol. 15, no. 1, p. 114.
  31. Чеботин, В.Н., Перфильев, М. В. Электрохимия твердых электролитов, М.: Химия, 1978. 313 с. [Chebotin, V.N. and Perfilev, M.V., Electrochemistry of solid electrolytes (in Russian), Moscow: Khimiya, 1978. 313 p.]
  32. Sammells, A.F., Kendall, K.R., Navas, C., Thomas, J.K., Loye, H.C., Amsif, M., and Hayashi, H., Structural consideration on the ionic conductivity of perovskite-type oxides, Solid State Ionics, 1999, vol. 122, p. 1.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental, calculated and difference X-ray diffraction patterns, as well as angular locations of reflections of the Ba7In5.9Y0.1Al2O19 sample.

下载 (124KB)
3. Fig. 2. SEM images of the cleavage surface of a ceramic (a) and powder (b) sample of Ba7In5.9Y0.1Al2O19.

下载 (507KB)
4. Fig. 3. TG curves of hydrated samples of Ba7In6Al2O19 xH2O and Ba7In5.9Y0.1Al2O19 xH2O.

下载 (83KB)
5. Fig. 4. Evolution of impedance hodographs with varying temperature in dry (a) and humid (b) air for Ba7In5.9Y0.1Al2O19.

下载 (243KB)
6. Fig. 5. Dependences of electrical conductivity on the partial pressure of oxygen of the Ba7In5.9Y0.1Al2O19 phase in dry (pH2O = 3.5 10–5 atm) (a) and wet (pH2O = 1.92 10–2 atm) (b) atmospheres, as well as a comparison of isotherms in dry and wet atmospheres (c) and a comparison with the undoped Ba7In6Al2O19 phase at 500°C (d).

下载 (421KB)
7. Fig. 6. Temperature dependences of oxygen-ion conductivity (a) and oxygen-ion transport numbers (b) for Ba7In6Al2O19 and Ba7In5.9Y0.1Al2O19 in a dry air atmosphere (pH2O = 3.5×10–5 atm).

下载 (179KB)
8. Fig. 7. Temperature dependences of proton and oxygen-ion conductivities of Ba7In5.9Y0.1Al2O19 and Ba5In1.9Y0.1Al2ZrO13.

下载 (101KB)
9. Fig. 8. Temperature dependences of proton conductivity and proton transport numbers for the Ba7In6Al2O19 and Ba7In5.9Y0.1Al2O19 phases.

下载 (179KB)

注意

2 Based on the materials of the lecture at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics”, Chernogolovka, June 16–23, 2024.


版权所有 © Russian Academy of Sciences, 2025