Characteristics of the charge-discharge cycle of a hydrogen-bromine battery with an IrO2/TiO2 cathode on a titanium felt in the full capacity utilization mode

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Сyclic charge/discharge process of a hydrogen-bromine battery has been studied. Porous titanium felt coated with mixed IrO2 – TiO2 oxide coverage in contact with aqueous HBr/Br2 solution has been used as positive (“cathode”) electrode. Hydrogen gas diffusion electrode with Pt/C catalytic layer served as negative electrode while the hydrogen ion is transferred between them via perfluorinated sulfocation-exchange membrane GP-IEM 103. Morphology, phase, and chemical composition of the cathode material have been characterized using scanning electron microscopy with X-ray spectral microanalysis, Raman spectroscopy and X-ray photoelectron spectroscopy. Condition for switching between the charging and discharging stages within each cycle (based on upper limit for voltage) has been chosen to minimize the amount of bromide and polybromide anions relative to molecular bromine formed at the end of the charging stage (oxidation of Br), instead of the traditionally used approach which includes only partial conversion of bromide to bromine in order to increase the stability of the latter in the form of polybromide complexes. Charge-discharge tests of the hydrogen-bromine battery are carried out in the galvanostatic mode at three current densities: 25, 50 and 75 mA/cm2. Comparison of the charge and average voltage values in the course of the electrical energy generation (discharge stage) and storage (charge stage) shows that the highest efficiency of the cycle is achieved at the current density of 50 mA/cm2. This value of the charge/discharge current density also corresponds to the maximal use of the redox capacity of the electrolyte. It has been found that the stability of the mixed-oxide cathode material used in contact with bromine compounds in acidic environment exceeds significantly that of the carbon paper. The main reason of the decrease of the battery capacity from cycle to cycle is the molecular bromine absorption by elements of the system in contact with the catholyte: components of the membrane-electrode assembly (MEA), pipelines and elements of the pump that ensures circulation.

全文:

受限制的访问

作者简介

N. Romanova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kartashova9natali@gmail.com

Факультет фундаментальной физико-химической инженерии

俄罗斯联邦, Moscow

D. Konev

Frumkin Institute of Physical chemistry and Electrochemistry, Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dkfrvzh@yandex.ru
俄罗斯联邦, Moscow; Chernogolovka

D. Muratov

University of Turin

Email: kartashova9natali@gmail.com
意大利, Turin

Е. Ruban

Frumkin Institute of Physical chemistry and Electrochemistry, Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS; Mendeleev University of Chemical Technology of Russia

Email: kartashova9natali@gmail.com
俄罗斯联邦, Moscow; Chernogolovka; Moscow

D. Tolstel

Lomonosov Moscow State University; Frumkin Institute of Physical chemistry and Electrochemistry, Russian Academy of Sciences

Email: kartashova9natali@gmail.com

Факультет фундаментальной физико-химической инженерии

俄罗斯联邦, Moscow; Moscow

M. Galin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: kartashova9natali@gmail.com
俄罗斯联邦, Chernogolovka

V. Kuznetsov

Frumkin Institute of Physical chemistry and Electrochemistry, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia

Email: kartashova9natali@gmail.com

Moscow; Moscow

俄罗斯联邦, Москва; Москва

М. Vorotyntsev

Frumkin Institute of Physical chemistry and Electrochemistry, Russian Academy of Sciences

Email: mivo2010@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Kim, T., Song, W., Son, D., Ono, L.K., and Qi, Y., Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Мater. Chem. A., 2019, vol. 7, p. 2942.
  2. Fedoseeva, Yu.V., Shlyakhova, E.V., Stolyarova, S.G., Vorfolomeeva, A.A., Grebenkina, M.A., Мakarova, A.A., Shubin, Yu.V., Okotrub, A.V., and Bulusheva, L.G., Brominated Porous Nitrogen-Doped Carbon Мaterials for Sodium-Ion Storage, Batteries, 2022, vol. 8, p. 114.
  3. Gerasimova, E.V., Kleinikova, S.A., Talagaeva, N.V., Gor'kov, K.V., Levchenko, M.G., and Zolotukhina, E.V., New insight on the study of electrocatalytic oxidation of methanol on some Pt group metals: Important methodological aspects, Int. J. Hydrogen Energy, 2023, vol. 48(88), p. 34396.
  4. Kleinikova, S.A., Levchenko, M.G., Yalмaev, A.B., Talagaeva, N.V., Dremova, N.N., Gerasimova, E.V., and Zolotukhina, E.V., Some features of alcohols electrooxidation process on Pd. Rh and PdRh catalysts, Electrochim. Acta, 2022, vol. 409, p. 139998.
  5. Singh, M., Zappa, D., and Comini, E., Solid oxide fuel cell: Decade of progress. future perspectives and challenges, Int. J. Hydrogen Energy, 2021, vol. 46(54), p. 27643.
  6. Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., and Liu, Q., Redox flow batteries: a review, J. Appl. Electrochem., 2011, vol. 41, p. 1137.
  7. Rugolo, J. and Aziz, M., Electricity storage for intermittent renewable sources, Energy Environ. Sci., 2012, vol. 5, p. 7151.
  8. Петров, М.М., Модестов, А.Д., Конев, Д.В., Антипов, А.Е., Локтионов, П.А., Пичугов, Р.Д., Карташова, Н.В., Глазков, А.Т., Абунаева, Л.З., Андреев, В.Н., Воротынцев, М.А. Проточные редокс-батареи: место в современной структуре электроэнергетики и сравнительные характеристики основных типов. Усп. химии. 2021. Т. 90. С. 835. [Petrov, M.M., Modestov, A.D., Konev, D.V., Antipov, A.E., Loktionov, P.A., Pichugov, R.D., Kartashova, N.V., Glazkov, A.T., Abunaeva, L.Z., Andreev V.N., and Vorotyntsev, M.A., Redox flow batteries: Role in modern electric power industry and comparative characteristics of the main types, Russ. Chem. Rev., 2021, vol. 90, p. 677.]
  9. Li, Z., Jiang, T., Ali, M., Wu, Ch., and Chen, W., Recent Progress in Organic Species for Redox Flow Batteries, Energy Stor. Мater., 2022, vol. 50, p. 105.
  10. Schlögl, R., Sustainable Energy Systems: The Strategic Role of Chemical Energy Conversion, Top. Catal., 2016, vol. 59, p. 772.
  11. Skyllas-Kazacos, M., Menictas, C., and Lim, T.M., Redox flow batteries for medium to large-scale energy storage, Electr. Transm. Distrib. Storage Syst. Woodhead Publishing Series in Energy, Cambrige, 2013, p. 398–441.
  12. Cho, K., Ridgway, P., Weber, A., Haussener, S., Battaglia, V., and Srinivasan, V., High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage, J. Electrochem. Soc., 2012, vol. 159, p. A1806.
  13. Oh, K., Weber, A.Z., and Ju, H., Study of bromine species crossover in H2/Br2 redox flow batteries, Int. J. Hydrogen Energy, 2017, vol. 42, p. 3753.
  14. Cho, K., Tucker, M., Ding, M., Ridgway, P., Battaglia, V., Srinivasan, V., and Weber, A., Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage, ChemPlusChem, 2015, vol. 80, p. 402.
  15. Antipov, A., Pichugov, R., Abunaeva, L., Tong, S., Petrov, M., Pustovalova, A., Speshilov, I., Kartashova, N., Loktionov, P., Modestov, A., and Glazkov, A., Halogen Hybrid Flow Batteries Advances for Stationary Chemical Power Sources Technologies, Energies, 2022, vol. 15, p. 7397.
  16. Mussini, T. and Longhi, P., The Halogens. Bromine, in: A.J. Bard, R. Parsons, J. Jordan (Eds.), Standard potentials in aqueous solutions, 1 ed., N.Y. Marcel Dekker Inc., 1985, p. 78.
  17. Tolmachev, Y.V., Hydrogen-Halogen Electrochemical Cells: A Review of Applications and Technologies, Russ. J. Electrochem., 2014, vol. 50, p. 301.
  18. Kelsall, G.H., Welham, N.J., and Diaz, M.A., Thermodynamics of Cl-H2O, Br-H2O, I-H2O, Au-Cl-H2O, Au-Br-H2O and Au-I-H2O systems at 298 K, J. Electroanal.. Chem., 1993, vol. 361, p. 13.
  19. Petrov, M. M., Konev, D. V., Kuznetsov, V. V., and Antipov, A. E., Electrochemically driven evolution of Br-containing aqueous solution composition, J. Electroanal. Chem., 2019, vol. 836, p. 125.
  20. Modestov, A.D., Konev, D.V., Antipov, A.E., and Vorotyntsev, M.A., Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J. Solid State Electrochem., 2019, vol. 23, p. 3075.
  21. Vorotyntsev, M.A., Antipov, А.Е., and Konev, D.V., Bromate anion reduction: novel autocatalytic (EC") mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities, Pure Appl. Chem., 2017, vol. 89, № 10, p. 1429.
  22. Modestov, A.D., Konev, D.V., Antipov, A.E., Petrov, M.M., Pichugov, R.D., and Vorotyntsev, M.A., Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study, Electrochim. Acta, 2018, vol. 259, p. 655.
  23. Vorotyntsev, M.A. and Antipov, A.E., Bromate electroreduction from acidic solution at spherical microelectrode under steady-state conditions: theory for the redox-mediator autocatalytic (EC") mechanism, Electrochim. Acta, 2017, vol. 258, p. 544.
  24. Konev, D.V., Antipov, A.E., Petrov, M.M., Shamraeva, M.A., and Vorotyntsev, M.A., Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC″) reaction mechanism, Electrochem. Comm., 2018, vol. 86, p. 76.
  25. Modestov, A.D., Konev, D.V., Tripachev, O.V., Antipov, A.E., Tolмachev, Y.V., and Vorotynsev, M.A., A Hydrogen–Bromate Flow Battery for Air-Deficient Environments, Energy Technol., 2018, vol. 6, p. 242.
  26. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Yu.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779.
  27. Kartashova, N.V., Konev, D.V., Loktionov, P.A., Glazkov, A.T., Goncharova, O.A., Petrov, M.M., Antipov, A.E., and Vorotyntsev, M.A., A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source, Membranes, 2022, vol. 12, p. 1228.
  28. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, no. 9, p. 2711.
  29. Petrov, M.M., Konev, D.V., Kuznetsov, V.V., Antipov, A.E., Glazkov, A.T., and Vorotyntsev, M.A., Electrochemically driven evolution of Br-containing aqueous solution composition, J. Electroanal. Chem., 2019, vol. 836, p. 125.
  30. Петров, М.М., Конев, Д.В., Антипов, А.E., Карташова, Н.В., Кузнецов, В.В., Воротынцев, М.А. Теоретический анализ изменения состава системы при окислительном электролизе раствора бромида: зависимость от рН. Электрохимия. 2020. Т. 56. C. 978. [Petrov, M.M., Konev, D.V., Antipov, A. E., Kartashova, N.V., Kuznetsov, V.V., and Vorotyntsev, M. A., Theoretical Analysis of Changes in the System’s Composition in the Course of Oxidative Electrolysis of Bromide Solution: pH Dependence, Russ. J. Electrochem., 2020, vol. 56, p. 883.]
  31. Konev, D.V., Zader, P.A., and Vorotyntsev, M.A., Evolution of the bromate electrolyte composition in the course of its electroreduction inside a membrane-electrode assembly with a proton-exchange membrane, Int. J. Mol. Sci., 2023, vol. 24, p. 15297.
  32. Cettou, P., Robertson, P., and Ibl, N., On the electrolysis of aqueous bromide solutions to bromate, Electrochim. Acta, 1984, vol. 29, p. 875.
  33. Grgur, B.N., Electrochemical Oxidation of Bromides on DSA/RuO2 Anode in the Semi-Industrial Batch Reactor for On-Site Water Disinfection, J. Electrochem. Soc., 2019, vol. 166, p. E50.
  34. Vacca, A., Мascia, M., Palmas, S., Мais, L., and Rizzardini, S., On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment, J. Chem. Technol. Biotechnol., 2013, vol. 88(12), p. 2244.
  35. Jung, Y., Yoon, Y., Kwon, M., Roh, S., Hwang, T.-M., and Kang, J.-W., Evaluation of energy consumption for effective seawater electrolysis based on the electrodes and salinity, Desalination Water Treat., 2015, vol. 57(22), p. 10136.
  36. De Pauli, C.P. and Trasatti S., Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts, J. Electroanal. Chem., 1995, vol. 396, p. 161.
  37. Xu, J., Liu, G., Li, J., and Wang X., The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction, Electrochim. Acta, 2012, vol. 59, p. 105.
  38. Shirley, D.A., High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B., 1972, vol. 5, p. 4709.
  39. Wojdyr, M., Fityk: A general-purpose peak fitting program, J. Appl. Cryst., 2010, vol. 43, p. 1126.
  40. Cui, M., Zhao, Y., Wang, C., and Song, Q., Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity, Microchim. Acta, 2016, vol. 183, p. 2047.
  41. Pfeifer, V., Jones, T.E., Velasco Vélez, J.J., Мassué, C., Arrigo, R., Teschner, D., Girgsdies, F., Scherzer, M., Greiner, M.T., Allan, J., Hashagen, M., Weinberg, G., Piccinin, S., Hävecker, M., Knop-Gericke, A., and Schlögl, R., The electronic structure of iridium and its oxides, Surf. Interface Anal., 2016, vol. 48, p. 261.
  42. Pfeifer, V., Jones, T.E., Velasco Vélez, J.J., Мassué, C., Greiner, M.T., Arrigo, R., Teschner, D., Girgsdies, F., Scherzer, M., Allan, J., Hashagen, M., Weinberg, G., Piccinin, S., Hävecker, M., Knop-Gericke, A., and Schlögl, R., The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 2292.
  43. Zhao, S., Yu, H., Мaric, R., Danilovic, N., Capuano, C.B., Ayers, K.E., and Mustain, W.E., Calculating the Electrochemically Active Surface Area of Iridium Oxide in Operating Proton Exchange Membrane Electrolyzers, J. Electrochem. Soc., 2015, vol. 162(12), p. F1292.
  44. Park, Y.J., Lee, J., Park, Y.S., Yang, J., Jang, M.J., Jeong, J., Choe, S., Lee, J.W., Kwon, J.D., and Choi, S.M., Electrodeposition of High-Surface-Area IrO2 Films on Ti Felt as an Efficient Catalyst for the Oxygen Evolution Reaction, Front. Chem., 2020, vol. 8, p. 593272.
  45. Pavlovic, Z., Ranjan, C., Gao, Q., Gastel, M., and Schlögl, R., Probing the Structure of a Water-Oxidizing Anodic Iridium Oxide Catalyst using Raman Spectroscopy, ACS Catal., 2016, vol. 6, p. 8098.
  46. Rossella, F., Galinetto, P., Mozzati, M.C., Мalavasi, L., Diaz Fernandez, Y., Drera, G., and Sangaletti, L., TiO2 thin films for spintronics application: a Raмan study, J. Raмan Spectrosc., 2010, vol. 41, p. 558.
  47. Ji, Y.-G., Wei, K., Liu, T., Wu, L., and Zhang, W.-H., “Naked” Iridium (IV) Oxide Nanoparticles as Expedient and Robust Catalysts for Hydrogenation of Nitrogen Heterocycles: Remarkable Vicinal Substitution Effect and Recyclability, Adv. Synth. Catal., 2017, vol. 359, p. 933.
  48. Lu, Y.M., Jiang, J., Becker, M., Kramm, B., Chen, L., Polity, A., He, Y.B., Klar, P.J., and Meyer, B.K., Polycrystalline SnO2 films grown by chemical vapor deposition on quartz glass, Vacuum, 2015, vol. 122, p. 347.
  49. Foti, G., Mousty, C., Reid, V., and Comninellis, C., Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor, Electrochim. Acta, 1998, vol. 44, p. 813.
  50. Kötz, R. and Stucki, S., Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta, 1986, vol. 31, p. 1311.
  51. de Oliveira-Sousa, A., da Silva, M.A.S., Machado, S.A.S., Avaca, L.A., and de Lima-Neto, P., Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes, Electrochim. Acta, 2000, vol. 45, p. 4467.
  52. Cho, K.T., Tucker, M.C., and Weber, A.Z., A Review of Hydrogen/Halogen Flow Cells, Energy Technol., 2016, vol. 4, p. 655.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. H2-Br2 battery cell design: 1 - metal end plates with compression fittings; 2 - sealing gaskets; 3 - current-carrying plate from titanium foil; 4 - bipolar plate from graflex with sealing rings; 5 - flow fields of “serpentine” type; 6a - electrodes from carbon paper Sigracet 39 AA; 6b - carbon paper Freudenberg H23C8 (loading Pt/C 1 mg/cm2); 7 - cation-conducting membrane; 8 - IrO2 /TiO2 /Ti electrode; 9 - titanium current collector.

下载 (234KB)
3. Fig. 2. SEM mapping of IrO2/TiO2/Ti electrode: (a) SEM image of the electrode material, (b) Ti distribution on the material surface, (c) O distribution on the material surface, (d) Ir distribution on the material surface, (e) Sn distribution on the material surface.

下载 (1MB)
4. Fig. 3. High-resolution RFES spectra of Ir 4 f (a) Sn 3d (b), O 1s (c), Ti 2p (d) electronic levels of IrO2 /TiO2 /Ti electrode.

下载 (906KB)
5. Fig. 4. CR spectrum of IrO2/TiO2/Ti electrode used in H2-Br2 current source.

下载 (337KB)
6. Fig. 5. CVA of a cell with different cathode materials when a background solution of 3 M H2SO4 is passed through it: 1 - IrO2/TiO2/Ti electrode, 2 - Sigraset 39AA carbon paper. Potential sweep rate - 20 mV/s, 3rd cycle, hydrogen supply to the anode - 0.5 l/h.

下载 (202KB)
7. Fig. 6. Charge-discharge curves of H2-Br2 PRBs, voltage range 0.4-1.4 V (a); dependences of the ratio (for discharge and charge stages) of charges (b), the ratio of average voltages (c) and energy efficiencies (d) on the charge-discharge cycle number at different current densities.

下载 (618KB)
8. Fig. 7. Dependence of the redox capacity and energy utilization ratios on the cycle number (a) and the redox capacity utilization ratio on the cycling time (b) for current densities of 25, 50, and 75 mA/cm2.

下载 (375KB)

版权所有 © Russian Academy of Sciences, 2024