SOLUTION OF A MULTIPOINT CONTROL PROBLEM WITH INTEGRAL CONSTRAINTS OF EQUALITIES TYPE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An algorithm for solving a linear multipoint control problem with isoperimetric type constraints on the state function is proposed.

作者简介

V. Laptinskii

Belarusian-Russian University

Email: lavani@tut.by
Mogilev, Belarus

参考

  1. Kantorovich, L.V. and Akilov, G.P., Funktsional’nyy analiz (Functional Analysis), Moscow: Nauka, 1977.
  2. Kantorovich, L.V., Vulikh, B.Z., and Pinsker, A.G., Funktsional’nyy analiz v poluuporyadochennykh prostranstvakh (Functional Analysis in Semi-Ordered Spaces), Moscow–Leningrad: Gostekhizdat, 1950.
  3. Moiseev, N.N., Chislennyye metody v teorii optimal’nykh sistem (Numerical Methods in the Theory of Optimal Systems), Moscow: Nauka, 1971.
  4. Laptinskii, V.N., Konstruktivnyi analiz upravlyayemykh kolebatel’nykh sistem (Constructive Analysis of Controlled Oscillatory Systems). Minsk: Inst. Mat. Nats. Akad. Nauk Belarusi, 1998.
  5. Trenogin, V.A., Funktsional’nyy analiz (Functional Analysis), Moscow: Nauka, 1980.
  6. Krasnosel’sky, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhonnoye resheniye operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
  7. Marchuk, G.I. and Agoshkov, V.I, Vvedeniye v proyektsionno-setochnyye metody (Introduction to Projection Mesh Methods), Moscow: Nauka, 1981.
  8. Riess, F. and Sz¨okefalvi-Nagy, B., Le¸cons D’Analyse Fonctionnelle, Budapest: Akad´emiai Kiad´o, 1979.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024