SOLUTION OF A MULTIPOINT CONTROL PROBLEM WITH INTEGRAL CONSTRAINTS OF EQUALITIES TYPE
- 作者: Laptinskii V.N1
-
隶属关系:
- Belarusian-Russian University
- 期: 卷 60, 编号 10 (2024)
- 页面: 1386-1393
- 栏目: CONTROL THEORY
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649603
- DOI: https://doi.org/10.31857/S0374064124100075
- EDN: https://elibrary.ru/JTGJGA
- ID: 649603
如何引用文章
详细
An algorithm for solving a linear multipoint control problem with isoperimetric type constraints on the state function is proposed.
参考
- Kantorovich, L.V. and Akilov, G.P., Funktsional’nyy analiz (Functional Analysis), Moscow: Nauka, 1977.
- Kantorovich, L.V., Vulikh, B.Z., and Pinsker, A.G., Funktsional’nyy analiz v poluuporyadochennykh prostranstvakh (Functional Analysis in Semi-Ordered Spaces), Moscow–Leningrad: Gostekhizdat, 1950.
- Moiseev, N.N., Chislennyye metody v teorii optimal’nykh sistem (Numerical Methods in the Theory of Optimal Systems), Moscow: Nauka, 1971.
- Laptinskii, V.N., Konstruktivnyi analiz upravlyayemykh kolebatel’nykh sistem (Constructive Analysis of Controlled Oscillatory Systems). Minsk: Inst. Mat. Nats. Akad. Nauk Belarusi, 1998.
- Trenogin, V.A., Funktsional’nyy analiz (Functional Analysis), Moscow: Nauka, 1980.
- Krasnosel’sky, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhonnoye resheniye operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
- Marchuk, G.I. and Agoshkov, V.I, Vvedeniye v proyektsionno-setochnyye metody (Introduction to Projection Mesh Methods), Moscow: Nauka, 1981.
- Riess, F. and Sz¨okefalvi-Nagy, B., Le¸cons D’Analyse Fonctionnelle, Budapest: Akad´emiai Kiad´o, 1979.
补充文件
