THE EXISTENCE OF OPTIMAL SETS FOR LINEAR VARIATIONAL EQUATIONS AND INEQUALITIES
- Authors: Zamuraev V.G1
-
Affiliations:
- Belarusian-Russian University
- Issue: Vol 60, No 6 (2024)
- Pages: 786-797
- Section: CONTROL THEORY
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649514
- DOI: https://doi.org/10.31857/S0374064124060055
- EDN: https://elibrary.ru/KWFSVZ
- ID: 649514
Cite item
Abstract
This paper considers an optimal control problem in which the controlled process is described by a linear functional equation in a Hilbert space, and the control action is a change of space. Sufficient conditions for the existence of a solution are obtained. The results are generalized to the case when the controlled process is described by a linear variational inequality.
References
- Zamuraev, V.G., The existence of optimal spaces for linear functional equations, Differ. Equat., 2002, vol. 38, no. 7, pp. 1046–1049.
- Lions, J., The optimal control of distributed systems, Russ. Math. Surv., 1973, vol. 28, no. 4, pp. 13-46.
- Begis, D. Application de la m´ethode des ´el´ements finis `a l’approximation d’un probl`eme de domaine optimal. M´ethodes de r´esolution des probl`emes approch´es / D. Begis, R. Glowinski // Appl. Math. and Optim. — 1975. — V. 2, № 2. — P. 130–169.
- Chenais, D. On the existence of a solution in a domain identification problem / D. Chenais // J. Math. Anal. Appl. — 1975. — № 52. — P. 189–219.
- Hlav´aˇcek, I. Optimization of the domain in elliptic unilateral boundary value problems by finite element method / I. Hlav´aˇcek, J. Neˇcas // Analyse Num´erique. — 1982. — V. 16, № 4. — P. 351–373.
- Osipov, Yu.S. and Suetov, A.P., A problem of J.-L. Lions, Dokl. AN SSSR, 1984, vol. 276, no. 2, pp. 288–291.
- Pironneau, O. Optimal Shape Design for Elliptic Systems / O. Pironneau. — New York : SpringerVerlag, 1984. — 168 p.
- Haslinger, J. Introduction to Shape Optimization: Theory, Approximation, and Computation / J. Haslinger, R.A.E. M¨akinen. — Philadelphia : SIAM, 2003. — 273 p.
- Neittaanmaki, P. Optimization of Elliptic Systems: Theory and Applications / P. Neittaanmaki, J. Sprekels, D. Tiba. — New York : Springer, 2006. — 507 p.
- Burachik, R.S. Set-Valued Mappings and Enlargements of Monotone Operators / R.S. Burachik, A.N. Iusem. — New York : Springer, 2008. — 293 p.
- Mikhlin, S.G., Kurs matematicheskoy fiziki (Mathematical Physics Course), Moscow: Nauka, 1968.
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations / H. Brezis. — New York : Springer, 2011. — 599 p.
Supplementary files
