АСИМПТОТИЧЕСКИЕ СВОЙСТВА ПАРАМЕТРИЧЕСКИХ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована параметрическая задача на собственные значения в бесконечномерном гильбертовом пространстве, возникающая в механике нагруженных тонкостенных конструкций. Установлены асимптотические свойства решений в зависимости от параметров нагружения. Исходная бесконечномерная задача аппроксимируется в конечномерном подпространстве. Получены теоретические оценки погрешности приближённых решений. Предложены эффективные численные методы вычисления основной резонансной частоты и соответствующей резонансной формы колебаний, основанные на асимптотических формулах.

Об авторах

А. А Самсонов

Казанский (Приволжский) федеральный университет

Email: anton.samsonov.kpfu@mail.ru
Казань, Россия

Список литературы

  1. Андреев, Л.В. Динамика пластин и оболочек с сосредоточенными массами / Л.В. Андреев, А.Л. Дышко, И.Д. Павленко. — М. : Машиностроение, 1988. — 200 c.
  2. Базаров, М.Б. Численное моделирование колебаний диссипативно однородных и неоднородных механических систем / М.Б. Базаров, И.И. Сафаров, Ю.И. Шокин. — Новосибирск : Изд-во СО РАН, Студия Дизайн ИНФОЛИО, 1996. — 189 c.
  3. Динамика тонкостенных конструкций с присоединёнными массами / Л.В. Андреев, А.И. Станкевич, А.Л. Дышко, И.Д. Павленко — М. : Издательство МАИ, 2012. — 214 с.
  4. Samsonov, A.A. and Solov’ev, S.I., Mathematical modeling of the eigenvibrations for the loaded shallow shell, E3S Web of Conferences, 2023, vol. 431, art. 05013.
  5. Korosteleva, D.M., Samsonov, A.A., Solov’ev, P.S., and Solov’ev, S.I., Investigation of the problem on eigenvibrations of a bar with mechanical resonator, Lobachevskii J. Math., 2021, vol. 42, no. 7, pp. 1697-1705.
  6. Соловьев, С.И. Аппроксимация вариационных задач на собственные значения / С.И. Соловьев // Дифференц. уравнения. — 2010. — Т. 46, № 7. — С. 1022-1032.
  7. Соловьев, С.И. Аппроксимация нелинейных спектральных задач в гильбертовом пространстве / С.И. Соловьев // Дифференц. уравнения. — 2015. — Т. 51, № 7. — С. 937-950.
  8. Соловьев, С.И. Аппроксимация знаконеопределённых спектральных задач / С.И. Соловьев // Дифференц. уравнения. — 2012. — Т. 48, № 7. — С. 1042-1055.
  9. Жигалко, Ю.П. К вопросу о колебаниях тонких пластин и оболочек, несущих сосредоточенные массы / Ю.П. Жигалко, А.К. Шалабанов // Исследования по теории пластин и оболочек. — Казань : КГУ, 1970. — Вып. 6-7. — С. 511-530.
  10. Литвинов, В.Г. Оптимизация в эллиптических граничных задачах с приложениями к механике / В.Г. Литвинов. — М. : Наука, 1987. — 368 с.
  11. Adams, R.A., Sobolev Spaces, New York: Academic Press, 1975.
  12. Соловьёв, С.И. Нелинейные задачи на собственные значения. Приближённые методы / С.И. Соловьёв. — Saarbrücken : Lambert Academic Publishing, 2011. — 256 с.
  13. Сьярле, Ф. Метод конечных элементов для эллиптических задач / Ф. Сьярле ; пер. с англ. Б.И. Квасова ; под ред. Н.Н. Яненко. — М. : Мир, 1980. — 512 с.
  14. Brenner, S.C. and Scott, L.R., The Mathematical Theory of Finite Element Methods, New York: Springer, 2008.
  15. Blum, H. and Rannacher, R., On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Meth. Appl. Sci., 1980, vol. 2, pp. 556-581.
  16. Bacuta, C., Bramble, J.H., and Pasciak, J.E., Shift theorems for the biharmonic Dirichlet problem, in Recent Progress in Computational and Applied PDEs, Zhangjiajie, 2001, eds. T.F. Chan, Y. Huang, T. Tang [et al.], New York: Kluwer/Plenum, 2002, pp. 1-26.
  17. Samsonov, A.A. and Solov’ev, S.I., Eigenvibrations of a beam with load, Lobachevskii J. Math., 2017, vol. 38, no. 5, pp. 849-855.
  18. Samsonov, A.A., Solov’ev, S.I., and Solov’ev, P.S., Eigenvibrations of a bar with load, MATEC Web of Conferences, 2017, vol. 129, art. 06013.
  19. Samsonov, A.A. and Solov’ev, S.I., Investigation of eigenvibrations of a loaded bar, MATEC Web of Conferences, 2018, vol. 224, art. 04013.
  20. Korosteleva, D.M., Koronova, L.N., Samsonov, A.A., and Solov’ev, S.I., Approximation of the problem on eigenvibrations of a string with attached load, Lobachevskii J. Math., 2022, vol. 43, no. 4, pp. 996-1005.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024