A POSTERIORI IDENTITIES FOR THE GENERALISED STOKES PROBLEM
- Authors: Repin S.I1
-
Affiliations:
- Saint Petersburg Department of Steklov Mathematical Institute of RAS
- Issue: Vol 61, No 5 (2025)
- Pages: 697-720
- Section: NUMERICAL METHODS
- URL: https://ter-arkhiv.ru/0374-0641/article/view/688509
- DOI: https://doi.org/10.31857/S0374064125050109
- EDN: https://elibrary.ru/GZTKOW
- ID: 688509
Cite item
Abstract
In the paper, functional identities for the difference between a given function and exact solution of the generalized Stokes problem are derived. The restrictions on the form of such a function are minimal. Actually, they are reduced to the requirement that it must belong to the same functional class as the solution of the problem. The left part of the identity represents a weighted sum of norms and characterizes deviations from the exact velocity and stresses fields. The right part includes a number of summands. Some of them can be directly computed from the problem data and known approximate solutions. Other terms contain unknown functions but can be efficiently estimated. Hence the identity is a basis for getting fully computable two-sided bounds of the distance to the solution of the problem. The identities and the estimates derived from them can be used to estimate errors of approximations generated by various numerical methods. They are true both for solenoidal approximations, as well as for those that satisfy the incompressibility condition only with a certain degree of accuracy. In addition, identities and estimates make it possible to compare exact solutions to problems with different data. Therefore, they open a way to evaluate errors of mathematical models, e.g., those that arise after changing (simplification) of the differential equation or due to replacing the incompressibility condition by weaker conditions.
About the authors
S. I Repin
Saint Petersburg Department of Steklov Mathematical Institute of RAS
Email: repin@pdmi.ras.ru
References
- Михлин, С.Г. Вариационные методы математической физики / С.Г. Михлин. — 2-е изд., перераб. и доп. — М. : Наука, 1970. — 512 с.
- Brezzi, F. Mixed and Hybrid Finite Element Methods / F. Brezzi, M. Fortin. — New York : Springer-Verlag, 1991. — 362 p.
- Репин, С.И. Оценки отклонения от точных решений некоторых краевых задач с условием несжимаемости / С.И. Репин // Алгебра и анализ. — 2004. — Т. 16, № 5. — C. 124–161.
- Repin, S. A Posteriori Estimates for Partial Differential Equations / S. Repin. — Berlin : Walter de Gruyter GmbH & Co. KG, 2008. — 328 p.
- Repin, S. Two-sided estimates of deviation from exact solutions of uniformly elliptic equations / S. Repin // Proc. of the St. Petersburg Math. Soc., V. IX. Amer. Math. Soc. Transl. Ser. 2. — 2003. — V. 209. — P. 143–171.
- Repin, S.I. Accuracy of Mathematical Models: Dimension Reduction, Homogenization, and Simplification / S.I. Repin, S.A. Sauter. — Z¨urich : European Math. Soc., 2020. — 335 p.
- Repin, S. A posteriori estimates for the Stokes problem / S. Repin // J. Math. Sci. (New York). — 2002. — V. 109, № 5. — P. 1950–1964.
- Repin, S. Estimates of deviations from the exact solution of a generalized Oseen problem / S. Repin // J. Math. Sci. (New York). — 2013. — V. 195, № 1. — P. 64–75.
- Brezzi, F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers / F. Brezzi // R.A.I.R.O. Annalyse Num´erique. — 1974. — V. 8, № R2. — P. 129–151.
- Neˇcas, J. Les M´ethodes Directes en Th´eorie des Equations Elliptiques / J. Neˇcas. — Paris : Masson ´ et Cie ; Prague : Academia, 1967. — 372 p.
- Ladyzenskaja, O.A. Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier–Stokes equation / O.A. Ladyzenskaja, V.A. Solonnikov // J. Math. Sci. — 1978. — V. 10. — P. 257–286.
- Repin, S. On projections to subspaces of vector valued functions subject to conditions of the divergence free type / S. Repin // Записки науч. сем. ПОМИ. — 2017. — V. 459. — P. 83–103.
- Репин, С.И. Тождество для отклонений от точного решения задачи Λ*𝐴Λ𝑢+ℓ = 0 и его следствия / С.И. Репин // Журн. вычислит. математики и мат. физики. — 2021. — T. 61, № 12. — С. 1986–2009.
- Ладыженская, О.А. О построении базисов в пространствах соленоидальных векторных полей / О.А. Ладыженская // Записки науч. сем. ПОМИ. — 2003. — T. 306. — C. 92–106.
- Dobrowolski M. On the LBB constant on stretched domains / M. Dobrowolski // Math. Nachr. — 2003. — V. 254–255. — P. 64–67.
- Ольшанский, М.А. О наилучшей константе в inf-sup-условии для вытянутых прямоугольных областей / М.А. Ольшанский, Е.В. Чижонков // Мат. заметки. — 2000. — Т. 67, № 3. — С. 387–396.
- Kessler, M. Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Stromungsproblemen Dissertation zur Erlangung des naturwissenschaftlichen, Doktorgrades der Bayerischen JuliusMaximilians-Universit¨at W¨urzburg / M. Kessler. — Wurzburg, 2000.
- Payne, L.E. A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov / L.E. Payne // IMA J. Appl. Math. — 2007. — V. 72. — P. 563–569.
- The inf-sup constant for the divergence on corner domains / M. Costabel, M. Crouzeix, M. Dauge, Y. Lafranche // Numer. Meth. Part. Differ. Equat. — 2015. — V. 31, № 2. — P. 439–458.
- Stoyan, G. Towards discrete Velte decompositions and narrow bounds for inf-sup constants / G. Stoyan // Computers & Mathematics with Applications. — 1999. — V. 38, № 7–8. — P. 243–261.
- Ekeland, I. Convex Analysis and Variational Problems / I. Ekeland, R. Temam. — New York : North-Holland, 1976. — 402 p.
Supplementary files
