ON EXACT SOLUTIONS OF MULTIDIMENSIONAL GENERALIZED MONGE–AMPERE EQUATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Exact solutions of some multidimensional generalized Monge–Ampere equations are found. These solutions are a superposition of a quadratic form of spatial variables and solutions of nonlinear ordinary differential equations generated by the Monge–Ampere equations.

About the authors

A. A Kosov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of RAS

Email: kosov_idstu@mail.ru
Irkutsk, Russia

E. I Semenov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of RAS

Email: edwseiz@gmail.com
Irkutsk, Russia

References

  1. Rozhdestvenskij, B.L. and Yanenko, N.N., Sistemy kvazilinejnyh uravnenij i ih prilozheniya k gazovoj dinamike (Systems of Quasilinear Equations and their Applications to Gas Dynamics), Moscow: Nauka, 1978.
  2. Polyanin, A.D. Handbook of Nonlinear Partial Differential Equations / A.D. Polyanin, V.F. Zaitsev. — 2nd ed. — New York : Chapman & Hall / CRC Press, 2012. — 1840 p.
  3. Polyanin, A.D. and Zajcev, V.F., Nelinejnye uravneniya matematicheskoj fiziki (Nonlinear Equations of Mathematical Physics), vol. 2, Moscow: Yurajt, 2023.
  4. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge Univ. Press, 1985.
  5. Martin, M.H. The Monge-Ampere partial differential equation —2 + 2 = 0 / M.H. Martin // Pasif. J. Math. — 1953. — V. 3. — P. 37-39.
  6. Pogorelov, A.V., Mnogomernoe uravnenie Monzha–Ampera (Multidimensional Monge–Ampere Equation), Moscow: Nauka, 1988.
  7. Fushchich, V.I. and Serov, N.I., Symmetry and some exact solutions of the multidimensional Monge–Ampere equation. Dokl. AN SSSR, 1983, vol. 273, no. 3, pp. 543–546.
  8. Leibov, O.S. Reduction and exact solutions of the Monge-Ampere equation / O.S Leibov // Nonlin. Math. Phys. — 1989. — V. 4, № 1-2. — P. 146-148.
  9. Polyanin, A.D., Exact solutions and reductions of nonstationary equations of mathematical physics of the Monge–Ampere type, Vestnik Nacional’nogo issledovatel’skogo yadernogo universiteta MIFI, 2023, vol. 12, no. 5, pp. 276–288.
  10. Rakhmelevich, I.V., Multidimensional Monge–Ampere equation with power-law nonlinearities in first derivatives, Vestnik VGU. Seriya Fizika. Matematika, 2020, no. 2, pp. 86–98.
  11. Rozendorn, E.R. Surfaces of negative curvature, Itogi nauki i tekhn. Ser. Sovrem. prob. mat. Fundam. napravleniya, 1989, vol. 48, pp. 98–195.
  12. Rozendorn, E.R., Some classes of partial solutions to the equation
  13. Trudinger, N.S. The Monge-Ampere equation and its geometric applications / N.S. Trudinger, X.J. Wang // Handbook of Geometric Analysis. — Somerville : International Press, 2008. — V. 1. — P. 467-524.
  14. Pogorelov, A.V., Differencial’naya geometriya (Differential Geometry), Moscow: Nauka, 1974.
  15. Kosov, A.A. and Semenov, E.I., On exact multidimensional solutions of a nonlinear system of reaction-diffusion equations, Differ. Equat., 2018, vol. 54. no. 1, pp. 106–120.
  16. Kosov, A.A. and Semenov, E.I., On exact solutions of a multidimensional system of elliptic equations with power-law nonlinearities Differ. Equat., 2023, vol. 54. no. 1, pp. 1627–1649.
  17. Cheng, S.Y. On the regularity of the Monge-Ampere equation det dx.dx. = F(x,u) / S-Y- Cheng, S.T. Yau // Comm. Pure Appl. Math. — 1977. — V. 30. — P. 41-68.
  18. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series. Elementary Functions, New York: Gordon and Breach Science Publishers, 1986.
  19. Dubinov, A.E., Dubinova, I.D., and Sajkov, S.K.
  20. Zajcev, V.F. and Polyanin, A.D., Obyknovennye differencial’nye uravneniya (Ordinary Differential Equations), Part 1, Moscow: Yurajt, 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences