ON EXACT SOLUTIONS OF MULTIDIMENSIONAL GENERALIZED MONGE–AMPERE EQUATION
- Authors: Kosov A.A1, Semenov E.I1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of RAS
- Issue: Vol 60, No 10 (2024)
- Pages: 1334-1349
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649600
- DOI: https://doi.org/10.31857/S0374064124100046
- EDN: https://elibrary.ru/JTRSCV
- ID: 649600
Cite item
Abstract
Exact solutions of some multidimensional generalized Monge–Ampere equations are found. These solutions are a superposition of a quadratic form of spatial variables and solutions of nonlinear ordinary differential equations generated by the Monge–Ampere equations.
About the authors
A. A Kosov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of RAS
Email: kosov_idstu@mail.ru
Irkutsk, Russia
E. I Semenov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of RAS
Email: edwseiz@gmail.com
Irkutsk, Russia
References
- Rozhdestvenskij, B.L. and Yanenko, N.N., Sistemy kvazilinejnyh uravnenij i ih prilozheniya k gazovoj dinamike (Systems of Quasilinear Equations and their Applications to Gas Dynamics), Moscow: Nauka, 1978.
- Polyanin, A.D. Handbook of Nonlinear Partial Differential Equations / A.D. Polyanin, V.F. Zaitsev. — 2nd ed. — New York : Chapman & Hall / CRC Press, 2012. — 1840 p.
- Polyanin, A.D. and Zajcev, V.F., Nelinejnye uravneniya matematicheskoj fiziki (Nonlinear Equations of Mathematical Physics), vol. 2, Moscow: Yurajt, 2023.
- Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge Univ. Press, 1985.
- Martin, M.H. The Monge-Ampere partial differential equation —2 + 2 = 0 / M.H. Martin // Pasif. J. Math. — 1953. — V. 3. — P. 37-39.
- Pogorelov, A.V., Mnogomernoe uravnenie Monzha–Ampera (Multidimensional Monge–Ampere Equation), Moscow: Nauka, 1988.
- Fushchich, V.I. and Serov, N.I., Symmetry and some exact solutions of the multidimensional Monge–Ampere equation. Dokl. AN SSSR, 1983, vol. 273, no. 3, pp. 543–546.
- Leibov, O.S. Reduction and exact solutions of the Monge-Ampere equation / O.S Leibov // Nonlin. Math. Phys. — 1989. — V. 4, № 1-2. — P. 146-148.
- Polyanin, A.D., Exact solutions and reductions of nonstationary equations of mathematical physics of the Monge–Ampere type, Vestnik Nacional’nogo issledovatel’skogo yadernogo universiteta MIFI, 2023, vol. 12, no. 5, pp. 276–288.
- Rakhmelevich, I.V., Multidimensional Monge–Ampere equation with power-law nonlinearities in first derivatives, Vestnik VGU. Seriya Fizika. Matematika, 2020, no. 2, pp. 86–98.
- Rozendorn, E.R. Surfaces of negative curvature, Itogi nauki i tekhn. Ser. Sovrem. prob. mat. Fundam. napravleniya, 1989, vol. 48, pp. 98–195.
- Rozendorn, E.R., Some classes of partial solutions to the equation
- Trudinger, N.S. The Monge-Ampere equation and its geometric applications / N.S. Trudinger, X.J. Wang // Handbook of Geometric Analysis. — Somerville : International Press, 2008. — V. 1. — P. 467-524.
- Pogorelov, A.V., Differencial’naya geometriya (Differential Geometry), Moscow: Nauka, 1974.
- Kosov, A.A. and Semenov, E.I., On exact multidimensional solutions of a nonlinear system of reaction-diffusion equations, Differ. Equat., 2018, vol. 54. no. 1, pp. 106–120.
- Kosov, A.A. and Semenov, E.I., On exact solutions of a multidimensional system of elliptic equations with power-law nonlinearities Differ. Equat., 2023, vol. 54. no. 1, pp. 1627–1649.
- Cheng, S.Y. On the regularity of the Monge-Ampere equation det dx.dx. = F(x,u) / S-Y- Cheng, S.T. Yau // Comm. Pure Appl. Math. — 1977. — V. 30. — P. 41-68.
- Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series. Elementary Functions, New York: Gordon and Breach Science Publishers, 1986.
- Dubinov, A.E., Dubinova, I.D., and Sajkov, S.K.
- Zajcev, V.F. and Polyanin, A.D., Obyknovennye differencial’nye uravneniya (Ordinary Differential Equations), Part 1, Moscow: Yurajt, 2023.
Supplementary files
