ON THE PROPERTIES OF THE SOLVABILITY SET FOR A LINEAR SYSTEM WITH UNCERTAINTY
- Authors: Melnikova A.A1,2, Tochilin P.A1,3, Daryin A.N1
-
Affiliations:
- Lomonosov Moscow State University
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: Vol 60, No 11 (2024)
- Pages: 1484-1498
- Section: CONTROL THEORY
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649593
- DOI: https://doi.org/10.31857/S0374064124110054
- EDN: https://elibrary.ru/JEGHXR
- ID: 649593
Cite item
Abstract
The work is devoted to the problem of verifying that the state of a linear controlled system of differential equations will hit the target set over a finite time interval, despite the uncertainties (noise). Some geometric, pointwise convex constraints on uncertainties are imposed. In the case of a two-dimensional state space a method is proposed for constructing a solvability set without the calculation of the convex hulls of the functions necessary to construct a support function of the geometric difference of the sets. A Hamilton–Jacobi–Bellman type equation is obtained, which is satisfied by the distance function to the solvability set.
About the authors
A. A Melnikova
Lomonosov Moscow State University;
Email: nastya.a.melnikova@gmail.com
P. A Tochilin
Lomonosov Moscow State University; V.A. Trapeznikov Institute of Control Sciences of RAS
Email: tochilin@cs.msu.ru
A. N Daryin
Lomonosov Moscow State University
Email: daryin@mail.ru
References
- Pontriagin, L.S., On linear differential games. II, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 4, pp. 910–912.
- Pontriagin, L.S., Linear differential games of pursuit, Math. USSR-Sb., 1981, vol. 40, no. 3, pp. 285–303.
- Kurzhanski, A.B., Pontryagin’s alternated integral in the theory of control synthesis, Proc. Steklov Inst. Math.,1999, vol. 224, pp. 212–225.
- Kurzhanski, A.B. Dynamics and Control of Trajectory Tubes / A.B. Kurzhanski, P. Varaiya. — Basel : Birkhauser, 2014. — 445 p.
- Fleming W.H. Controlled Markov Processes and Viscosity Solutions / W.H. Fleming, H.M. Soner. — New York : Springer, 2006. — 429 p.
- Melnikova, A.A. and Tochilin, P.A., On a problem of calculating the solvability set for a linear system with uncertainty, Differ. Equat., 2023, vol. 59, no. 11, pp. 1538–1546.
- Kurzhanski, A.B. Ellipsoidal Calculus for Estimation and Control / A.B. Kurzhanski, I. Valyi. — Boston : Birkhauser, 1997. — 321 p.
- Polovinkin, E.S. and Balashov, M.V., Elementy vypuklogo i sil’no vypuklogo analiza (Elements of Convex and Strongly Convex Analysis), Moscow: Fizmatlit, 2007.
- Kurzhanski, A.B., Upravlenie i nabl’udenie v usloviah neopedelennosti (Control and Observation under Uncertainty Conditions), Moscow: Nauka, 1977.
- Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970.
- Arutyunov, A.V., Lekcii po vypuklomu i mnogoznachnomu analizu (Lectures on Convex and Set-Valued Analysis), Moscow: Fizmatlit, 2014
- Filippov, A.F., Differential Equations with Discontinuous Righthand Sides, Springer, 1988.
- Lyapunov, A.A., On countably additive set-functions, Izv. Akad. Nauk SSSR Ser. Mat., 1940, no. 6, pp. 465–478
Supplementary files
