ON FEEDBACK CONTROL SYSTEMS GOVERNED BY FRACTIONAL DIFFERENTIAL INCLUSIONS
- Authors: Petrosyan G.G.1
-
Affiliations:
- Voronezh State Pedagogical University
- Issue: Vol 60, No 11 (2024)
- Pages: 1499-1518
- Section: CONTROL THEORY
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649592
- DOI: https://doi.org/10.31857/S0374064124110067
- EDN: https://elibrary.ru/JEFZHE
- ID: 649592
Cite item
Abstract
For feedback systems governed by fractional semilinear differential inclusions and a sweeping process in a Hilbert space, controllability conditions are found. For the proof, topological methods of nonlinear analysis for multivalued condensing maps are used.
About the authors
G. G. Petrosyan
Voronezh State Pedagogical University
Email: garikpetrosyan@yandex.ru
References
- Balachandran, K. Controllability of nonlinear systems in Banach spaces: a survey / K. Balachandran, J.P. Dauer //J. Optim. Theory Appl. — 2002. — V. 115. — P. 7-28.
- Benedetti, I. Controllability for impulsive semilinear functional differential inclusions with a noncompact evolution operator / I. Benedetti, V. Obukhovskii, P. Zecca // Discuss. Math. Differ. Incl. Control Optim. — 2011. — V. 31. — P. 39-69.
- Gorniewicz, L. Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces / L. Gorniewicz, S.K. Ntouyas, D. O’Regan // Rep. Math. Phys. — 2005. — V. 56. — P. 437-470.
- Monteiro Marques, M.D.P. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction / M.D.P. Monteiro Marques // Progress Nonlin. Differ. Equat. Appl. — 1993. — V. 9.
- Valadier, M. Rafle et viabilite / M. Valadier // Sem. Anal. Convexe Exp. — 1992. — V. 22, № 17.
- Edmond, J.F. Relaxation of an optimal control problem involving a perturbed sweeping process / J.F. Edmond, L. Thibault // Math. Program. Ser. B. — 2005. — V. 104. — P. 347-373.
- Tolstonogov, A.A., Local existence conditions for sweeping process solutions, Sb. Math., 2019, vol. 210, no. 9, pp. 1305–1325.
- Kilbas, A.A. Theory and Applications of Fractional Differential Equations / A.A. Kilbas, H.M. Sriva-stava, J.J. Trujillo. — Amsterdam : Elsevier Science B.V., North-Holland Mathematics Studies, 2006.
- Podlubny, I. Fractional Differential Equations / I. Podlubny. — San Diego : Academic Press, 1999.
- Gomoyunov, M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems / M.I. Gomoyunov // Fract. Calc. Appl. Anal. — 2018. — V. 21. — P. 1238-1261.
- On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces / V. Obukhovskii, G. Petrosyan, C.F. Wen, V. Bocharov // J. Nonlin. Var. Anal. — 2022. — V. 6, № 3. — P. 185-197.
- Petrosyan, G., On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space, Vestn. Udmurt. Un-ta. Matematika. Mekhanika. Komp’yuternye Nauki, 2022, vol. 32, no. 3, pp. 415–432.
- Zhou, Y. Existence of mild solutions for fractional neutral evolution equations / Y. Zhou, F. Jiao // Comput. Math. Appl. — 2010. — V. 59. — P. 1063-1077.
- Kamenskii, M. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces / M. Kamenskii, V. Obukhovskii, P. Zecca. — Berlin ; New-York : Walter de Gruyter, 2001.
- Borisovich, Yu.G., Gel’man, B.D., Myshkis, A.D., and Obukhovskii, V.V., Vvedeniye v teoriyu mnogoznachnykh otobrazheniy i differentsial’nykh vklyucheniy (Introduction to the Theory of Multivalued Maps and Differential Inclusions), Moscow: Librocom, 2011.
- Mainardi, F. On the initial value problem for the fractional diffusion-wave equation / F. Mainardi, S. Rionero, T. Ruggeri // Waves and Stability in Continuous Media. — 1994. — P. 246-251.
- Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry / R.R. Nigmatullin // Phys. Status Solidi B. — 1986. — V. 133. — P. 425-430.
Supplementary files
