Solvability of initial-boundary value problem for the modified Kelvin–Voigt model with memory along trajectories of fluid motion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to proving the solvability in the weak sense of the initial-boundary value problem for the modified Kelvin–Voigt model taking into account memory along the trajectories of fluid particles motion. For this, an approximation problem is considered for which solvability is established based on the Leray–Schauder fixed point theorem. Then, based on a priori estimates, it is shown that from a sequence of solutions to the approximation problem, one can extract a subsequence that weakly converges to the solution of the original problem as the approximation parameter tends to zero.

Full Text

Restricted Access

About the authors

M. V. Turbin

Voronezh State University

Email: mrmike@mail.ru
Russian Federation, Voronezh

A. S. Ustiuzhaninova

Voronezh State University

Author for correspondence.
Email: nastyzhka@gmail.com
Russian Federation, Voronezh

References

  1. Павловский, В.А. К вопросу о теоретическом описании слабых водных растворов полимеров / В.А. Павловский // Докл. АН СССР. — 1971. — Т. 200, № 4. — C. 809–812. Pavlovsky, V.A. On theoretical description of weak aqueous solutions of polymers / V.A. Pavlovsky // Doklady Akademii Nauk SSSR. — 1971. — V. 200, № 4. — P. 809–812.
  2. Амфилохиев, В.Б. Экспериментальные данные о ламинарно-турбулентном переходе при течении полимерных растворов в трубах / В.Б. Амфилохиев, В.А. Павловский // Тр. Ленинградского ордена Ленина кораблестроительного ин-та. — 1976. — Т. 104. — С. 3–5. Amfilokhiev, V.B. Experimental data on laminar-turbulent transition for flows of polymer solutions in pipes / V.B. Amfilokhiev, V.A. Pavlovsky // Trudy Leningradskogo ordena Lenina korablestroitel’nogo instituta. — 1975. — V. 104. — P. 3–5.
  3. Течения полимерных растворов при наличии конвективных ускорений / В.Б. Амфилохиев, Я.И. Войткунский, Н.П. Мазаева, Я.С. Ходорковский // Тр. Ленинградского ордена Ленина кораблестроительного ин-та. — 1975. — Т. 96. — С. 3–9. Flows of polymer solutions in the case of convective accelerations / V.B. Amfilokhiev, Y.I. Voitkunskii, N.P. Mazaeva, Y.S. Khodornovskii // Trudy Leningradskogo ordena Lenina korablestroitel’nogo instituta. — 1975. — V. 96. — P. 3–9.
  4. Осколков, А.П. О разрешимости в целом первой краевой задачи для одной квазилинейной системы 3-го порядка, встречающейся при изучении движения вязкой жидкости / А.П. Осколков // Записки науч. семинаров ЛОМИ. — 1972. — Т. 27. — C. 145–160. Oskolkov, A.P. Solvability in the large of the first boundary value problem for a certain quasilinear third order system that is encountered in the study of the motion of a viscous fluid / A.P. Oskolkov // Zapiski Naucnyh Seminarov Leningradskogo Otdelenija Matematiceskogo Instituta imeni V.A. Steklova Akademii Nauk SSSR (LOMI). — 1972. — V. 27. — P. 145–160.
  5. Осколков, А.П. О единственности и разрешимости в целом краевых задач для уравнений движения водных растворов полимеров / А.П. Осколков // Записки науч. семинаров ЛОМИ. — 1973. — Т. 38. — С. 98–136. Oskolkov, A.P. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers / A.P. Oskolkov // Zapiski Naucnyh Seminarov Leningradskogo Otdelenija Matematiceskogo Instituta imeni V.A. Steklova Akademii Nauk SSSR (LOMI). — 1973. — V. 38. — P. 98–136.
  6. Осколков, А.П. О некоторых квазилинейных системах, встречающихся при изучении движения вязких жидкостей / А.П. Осколков // Записки научных семинаров ЛОМИ. — 1975. — Т. 52. — С. 128–157. Oskolkov, A.P. Some quasilinear systems that arise in the study of the motion of viscous fluids / A.P. Oskolkov // Zapiski Naucnyh Seminarov Leningradskogo Otdelenija Matematiceskogo Instituta imeni V.A. Steklova Akademii Nauk SSSR (LOMI). — 1975. — V. 52. — P. 128–157.
  7. Ладыженская, О.А. О погрешностях в двух моих публикациях по уравнениям Навье–Стокса и их исправлениях / О.А. Ладыженская // Записки научных семинаров ПОМИ. — 2000. — Т. 271. — С. 151–155. Ladyzhenskaya, O.A. On some gaps in two of my papers on the Navier–Stokes equations and the way of closing them / O.A. Ladyzhenskaya // J. of Math. Sci. — 2003. — V. 115. — P. 2789–2791.
  8. Турбин, М.В. Теорема существования слабого решения начально-краевой задачи для системы уравнений, описывающей движение слабых водных растворов полимеров / М.В. Турбин, А.С. Устюжанинова // Изв. вузов. Математика. — 2019. — № 8. — С. 62–78. Turbin, M.V. The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions / M.V. Turbin, A.S. Ustiuzhaninova // Russian Mathematics. — 2019. — V. 63. — P. 54–69.
  9. Устюжанинова, А.С. Равномерные аттракторы для модифицированной модели Кельвина–Фойгта / А.С. Устюжанинова // Дифференц. уравнения. — 2021. — T. 57, № 9. — С. 1191–1202. Ustiuzhaninova, A.S. Uniform attractors for the modified Kelvin–Voigt model / A.S. Ustiuzhaninova // Differ. Equat. — 2021. — V. 57, № 9. — P. 1165–1176.
  10. Устюжанинова, А.С. Траекторные и глобальные аттракторы для модифицированной модели Кельвина–Фойгта / А.С. Устюжанинова, М.В. Турбин // Сиб. журн. индустр. математики. — 2021. — Т. 24, № 1. — С. 126–138. Ustiuzhaninova, A.S. Trajectory and global attractors for a modified Kelvin–Voigt model / A.S. Ustiuzhaninova, M.V. Turbin // J. of Appl. and Indust. Math. — 2021. — V. 15. — P. 158–168.
  11. Ustiuzhaninova, A. Feedback control problem for modified Kelvin–Voigt model / A. Ustiuzhaninova, M. Turbin // J. of Dynam. and Control Systems. — 2022. — V. 28. — P. 465–480.
  12. Turbin, M. Pullback attractors for weak solution to modified Kelvin–Voigt model / M. Turbin, A. Ustiuzhaninova // Evolution Equat. and Control Theory. — 2022. — V. 11, № 6. — P. 2055–2072.
  13. Виноградов, Г.В. Реология полимеров / Г.В. Виноградов, А.Я. Малкин. — М. : Химия, 1977. — 440 с. Vinogradov, G.V-1.2pt. Rheology of Polymers: Viscoelasticity and Flow of Polymers / G.V-1.2pt. Vinogradov, A.Y-1.2pt. Malkin. — Berlin; Heidelberg : Springer-Verlag, 1980.
  14. Звягин, В.Г. Математические вопросы гидродинамики вязкоупругих сред / В.Г. Звягин, М.В. Турбин. — М. : Красанд, 2012. — 412 с. Zvyagin, V.G. Mathematical Problems in Viscoelastic Hydrodynamics / V.G. Zvyagin, M.V. Turbin. — Moscow : Krasand, 2012. — 412 p.
  15. Simon, J. Compact sets in the space / J. Simon // Ann. Mat. Pura Appl. — 1987. — № 146. — P. 65–96.
  16. Gajewski, H. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen / H. Gajewski, K. Groger, K. Zacharias. — Berlin : Akademie Verlag, 1974. — 281 s.
  17. Беккенбах, Э. Неравенства / Э. Беккенбах, Р. Беллман. — М. : Мир, 1965. — 276 с. Beckenbach, E.F. Inequalities / E.F. Beckenbach, R. Bellman. — Berlin; Heidelberg : Springer, 1961.
  18. Orlov, V.P. On the mathematical models of a viscoelasticity with a memory / V.P. Orlov, P.E. Sobolevskii // Differ. and Integr. Equat. — 1991. — V. 4, № 1. — P. 103–115.
  19. DiPerna, R.J. Ordinary differential equations, transport theory and Sobolev spaces / R.J. DiPerna, P.-L. Lions // Invent. Math. — 1989. — V. 98. — P. 511–547.
  20. Crippa, G. Estimates and regularity results for the DiPerna–Lions flow / G. Crippa, C. De Lellis // J. Reine Angew. Math. — 2008. — V. 616. — P. 15–46.
  21. Edwards, C.H. Advanced calculus of several variables / C.H. Edwards. — New York; London : Academic Press, 1973. — 457 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences