ABOUT THE CORE STRUCTURE OF THE SCHWARTZ PROBLEM FOR FIRST-ORDER ELLIPTIC SYSTEMS ON A PLANE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Schwarz problem for

About the authors

V. G. Nikolaev

Novgorod State University

Email: vg14@inbox.ru
Russia

References

  1. Гахов, Ф.Д. Краевые задачи / Ф.Д. Гахов. — М. : Наука, 1977. — 641 с.
  2. Мусхелишвили, Н.И. Сингулярные интегральные уравнения / Н.Н. Мусхелишвили. — М. : Наука, 1968. — 513 с.
  3. Бицадзе, А.В. Краевые задачи для эллиптических уравнений второго порядка / А.В. Бицадзе. — М. : Наука, 1966. — 202 с.
  4. Солдатов, А.П. Функции, аналитические по Дуглису / А.П. Солдатов. — Белгород : Изд-во БелГУ, 2016. — 88 с.
  5. Солдатов, А.П. Гипераналитические функции и их приложения / А.П. Солдатов // Совр. математика и ее приложения. — 2004. — Т. 15. — С. 142–99.
  6. Vasilyev, V.B. General boundary value problems for pseudo differential equations and related difference equations / V.B. Vasilyev // Adv. Differ. Equat. — 2013. — V. 289. — P. 1–7.
  7. Vasilyev, V.B. Pseudo differential equations on manifolds with non-smooth boundaries / V.B. Va- silyev // Differ. and Difference Equat. Appl. — 2013. — V. 47. — P. 625–637.
  8. Vasilyev, V.B. On some transmission problems in a plane corner / V.B. Vasilyev // Tatra Mt. Math. Publ. — 2015. — V. 63. — P. 291–301.
  9. Soldatov, A.P. On representation of solutions of second order elliptic systems on the plane / A.P. Soldatov // More Progresses in Analysis. Proc. of the 5th Int. ISAAC Congress. 25–30 July 2009. — Catania, Italy, 2009. — V. 2. — P. 1171–1184.
  10. Солдатов, А.П. Задача Шварца для функций, аналитических по Дуглису / А.П. Солдатов // Совр. математика и ее приложения. — 2010. — Т. 67. — С. 99–102.
  11. Nikolaev, V. On a certain functional equation and its application to the Schwarz problem / V. Nikolaev, V. Vasilyev // Mathematics. — 2023. — V. 11, № 12. — Art. 2789.
  12. Nikolaev, V.G. Solutions to the Schwarz problem with diagonalizable matrices in ellipse / V.G. Ni- kolaev // J. Math. Sci. — 2020. — V. 244, № 4. — P. 655–670.
  13. Nikolaev, V.G. A class of orthogonal polynomials on the boundary of an ellipse / V.G. Nikolaev // J. Math. Sci. — 2019. — V. 239, № 3. — P. 363–380.
  14. Николаев В.Г. Об одном преобразовании задачи Шварца / В.Г. Николаев // Вестн. Самарск. гос. ун-та. Сер. естественнонаучная. — 2012. — Т. 6, № 97. — С. 27–34.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences