EXPLICIT-IMPLICIT SCHEMES FOR CALCULATING DYNAMICS OF ELASTOVISCOPLASTIC MEDIA WITH SOFTENING

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper examines the dynamic behavior of elastoviscoplastic media under the action of an external load. For the case of a linear viscosity function and a nonlinear softening function, an explicit-implicit calculation scheme has been constructed that makes it possible to obtain a numerical solution to the original semilinear hyperbolic problem. This approach does not involve the use of the method of splitting into physical processes. Despite this, an explicit computational algorithm was obtained that can be effectively implemented on modern computing systems.

About the authors

V. I Golubev

Moscow Institute of Physics and Technology; Institute of Computer Aided Design of the RAS

Email: golubev.vi@mipt.ru
Dolgoprudny, Russia; Moscow, Russia

I. S Nikitin

Institute of Computer Aided Design of the RAS

Email: i_nikitin@list.ru
Moscow, Russia

A. V Shevchenko

Moscow Institute of Physics and Technology; Institute of Computer Aided Design of the RAS

Email: alexshevchenko@phystech.edu
Dolgoprudny, Russia; Moscow, Russia

I. B Petrov

Moscow Institute of Physics and Technology

Email: petrov@mipt.ru
Dolgoprudny, Russia

References

  1. Freudenthal, A. and Geiringer, H., The Mathematical Theories of the Inelastic Continuum, in Encyclopedia of Physics, S. Flugge, ed., Vol. VI. Elasticity and Plasticity, Springer-Verlag, 1958, pp. 229–433.
  2. Perzyna, P. Fundamental problems in viscoplasticity / P. Perzyna // Adv. Appl. Mech. — 1966. — V. 9. — P. 243–377.
  3. Kolarov, D., Baltov, A., and Boncheva, N., Mehanika plasticheskih sred (Mechanics of Plastic Media), Moscow: Nauka, 1979.
  4. Novatskii, V.K., Volnovie zadachi teorii plastichnosti (Wave Problems of Plasticity Theory), Moscow: Nauka, 1978.
  5. Duvaut, G. and Lions, J.-L., Les In´equations en M´ecanique et en Physique, Paris: Dunod, 1972.
  6. Sadovskii, V.M. Razrivnie resheniya v zadachah dinamiki uprugoplasticheskih sred (Discontinuous Solutions in Problems of Dynamics of Elastoplastic Media), Moscow: Nauka, 1997.
  7. Ortiz, M. An analysis of a new class of integration algorithms for elastoplastic constitutive relations / M. Ortiz, J.C. Simo // Int. J. Numer. Meth. Eng. — 1986. — V. 23, № 3. — P. 353–366.
  8. Simo, J.C. Elastoplasticity and Viscoplasticity-Computational Aspects / J.C. Simo, T.J. Hughes. — New-York : Springer, 1988.
  9. Kukudzhanov, V.N., Vichislitelnaya mehanika sploshnih sred (Numerical Mechanics of Continuum Media), Moscow: Nauka, 2008.
  10. Wilkins, M.L., Calculation of elastic-plastic flow, in Methods in Computational Physics. Advances in Research and Applications. Vol. 3. Fundamental Methods in Hydrodynamics, B. Alder, S. Fernbach, M. Rotenberg, eds., New York; London: Academic Press, 1967, pp. 211–264.
  11. Wilkins, M.L. Computer Simulation of Dynamic Phenomena / M.L. Wilkins. — Berlin; Heidelberg; New York : Springer, 1999. — 264 p.
  12. Kukudzhanov, V.N., Metod raschepleniya uprugoplasticheskih uravnenij (Method for splitting elastoplastic equations), Mehanika Tverdogo Tela (Mechanics of Solid Body), 2004, no. 1, pp. 98–108.
  13. Failure mechanism, existing constitutive models and numerical modeling of landslides in sensitive clay: a review / Z.A. Urmi, A. Saeidi, R. Chavali, A. Yerro // Geoenvironmental Disasters. — 2023. — V. 10. — Art. 14
  14. Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity / X. Zhang, D. Sheng, S.W. Sloan, J. Bleyer // Int. J. Numer. Methods Eng. — 2017. — V. 112. — P. 963–989.
  15. Hinchberger, S.D. Viscoplastic constitutive approach for rate-sensitive structured clays / S.D. Hinchberger, G. Qu // Canad. Geotech. J. — 2009. — V. 46, № 6. — P. 609–626.
  16. Kukudzhanov, V.N., Rasprostranenie voln v uprugoplasticheskih materialah s diagrammoj obchego vida (Wave propagation in elastoviscoplastic materials with a general diagram), Mehanika Tverdogo Tela (Mechanics of Solid Body), 2001, no. 5, pp. 96–111.
  17. Kukudzhanov, V.N., Mikromehanicheskaya model razrusheniya neuprugogo materiala i ee promenenie k issledovaniyu lokalizacii deformacii (Micromechanical model of fracture of an inelastic material and its application to the study of strain localization), Mehanika Tverdogo Tela (Mechanics of Solid Body), 1999, no. 5, pp. 72–87.
  18. Golubev, V.I., Nikitin, I.S., Burago, N.G., and Golubeva, Yu.A., Explicit–implicit schemes for calculating the dynamics of elastoviscoplastic media with a short relaxation time, Differ. Equat., 2023, vol. 59, no. 6, pp. 822–832.
  19. Golubev, V.I. and Nikitin, I.S., Refined schemes for computing the dynamics of elastoviscoplastic media, Comput. Math. Math. Phys., 2023, vol. 63, no. 10, pp. 1874–1885.
  20. Golubev, V.I. Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media / V.I. Golubev, I.S. Nikitin, X. Mi // Журн. Сиб. федерал. ун-та. Математика и физика. — 2024. — Т. 17, № 1. — С. 8–17.
  21. Burago, N.G., Modelirovanie razrusheniya uprugoplasticheskih tel (Simulation of destruction of elastoplastic bodies), Vichislitelnaya Mehanika Sploshnih Sred (Numerical Mechanics of Continuum Media), 2008, vol. 1, no. 4, pp. 5–20.
  22. Burago, N.G. and Nikitin, I.S., Algorithms of through calculation for damage processes, Computer Research and Modeling, 2018, vol. 10, no. 5, pp. 645–666.
  23. Golubev, V.I., Shevchenko, A.V., and Petrov, I.B., Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting, Computer Research and Modeling, 2022, vol. 14, no. 4, pp. e899–e910.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences