On the Variation of the Nonlinearity Parameter in the “Super-Twisting” Algorithm
- Autores: Fomichev V.V.1,2,3, Vysotskiy A.O.2
-
Afiliações:
- Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China
- Lomonosov Moscow State University, Moscow, 119991, Russia
- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
- Edição: Volume 59, Nº 11 (2023)
- Páginas: 1571-1574
- Seção: Articles
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649458
- DOI: https://doi.org/10.31857/S0374064123110134
- EDN: https://elibrary.ru/PFBOCN
- ID: 649458
Citar
Resumo
We study the stability of a modified (with variation in the nonlinearity parameter) “super-twisting” algorithm. The analysis is based on majorizing the trajectories of the system with an arbitrary nonlinearity parameter by the trajectories of systems of the classical “super-twisting” algorithm. Stability conditions for the modified systems are obtained, as well as estimates for the size of the stability domain depending on system parameters
Sobre autores
V. Fomichev
Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China; Lomonosov Moscow State University, Moscow, 119991, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
Email: fomichev@cs.msu.ru
Ханчжоу, Китай;Москва, Россия
A. Vysotskiy
Lomonosov Moscow State University, Moscow, 119991, Russia
Autor responsável pela correspondência
Email: vysotskiial@gmail.com
Москва, Россия
Bibliografia
- Емельянов С.В., Коровин С.К., Левантовский Л.В. Новый класс алгоритмов скольжения второго порядка // Мат. моделирование. 1990. Т. 2. № 3. С. 89-100.
- Levant A. Sliding order and sliding accuracy in sliding mode control // Int. J. of Control. 1993. V. 58. P. 1247-1263.
- Moreno J., Osorio M. Strict Lyapounov functions for the super-twisting algorithm // IEEE Trans. on Autom. Contr. 2012. V. 57. P. 1035-1040.
- Seeber R., Horn M. Stability proof for a well-established super-twisting parameter setting // Automatica. 2017. V. 84. P. 241-243.
- Seeber R., Horn M. Necessary and sufficient stability criterion for the super-twisting algorithm // 15th Intern. Workshop on Variable Structure Systems (VSS). 2018. P. 120-125.
- Фомичев В.В., Высоцкий А.О. Критерий устойчивости и точные оценки для алгоритма "супер-скручивания"// Дифференц. уравнения. 2023. Т. 59. № 2. С. 252-256.
Arquivos suplementares
