On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Schrödinger operator on the plane with bounded potential, where is a real potential, and are compactly supported complex potentials, and 
 is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside.

Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.

作者简介

D. Borisov

Institute of Mathematics with Computing Centre, Subdivision of the Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, 450008, Russia; Akmulla Bashkir State Pedagogical University, Ufa, 450008, Russia; Univerzita Hradec Králové, Hradec Králové III, 500 03, Czech Republic

Email: borisovdi@yandex.ru
г. Уфа, Росия;г. Градец Кралове, Чехия

D. Zezyulin

ITMO University, St. Petersburg, 197101, Russia

编辑信件的主要联系方式.
Email: d.zezyulin@gmail.com
г. Санкт-Петербург, Россия

参考

  1. Guseinov G.Sh. On the concept of spectral singularities // Pramana - J. Phys. 2009. V. 73. № 3. P. 587-603.
  2. Borisov D.I., Zezyulin D.A., Znojil M. Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations // Stud. Appl. Math. 2021. V. 146. № 4. P. 834-880.
  3. Borisov D.I., Zezyulin D.A. Bifurcations of essential spectra generated by a small non-Hermitian hole. I. Meromorphic continuations // Russ. J. Math. Phys. 2021. V. 28. № 4. P. 416-433.
  4. Borisov D.I., Zezyulin D.A. Bifurcations of essential spectra generated by a small non-Hermitian small hole. II. Eigenvalues and resonances // Russ. J. Math. Phys. 2022. V. 29. № 3. P. 321-341.
  5. Назаров С.А. Сохранение пороговых резонансов и отцепление собственных чисел от порога непрерывного спектра квантовых волноводов // Мат. сб. 2021. Т. 212. № 7. С. 84-121.
  6. Назаров С.А. Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов // Изв. РАН. Сер. мат. 2020. Т. 84. № 6. С. 73-130.
  7. Гатауллин Т.М., Карасёв М.В. О возмущении квазиуровней оператора Шрёдингера с комплексным потенциалом // Теор. мат. физ. 1971. Т. 9. № 2. С. 252-263.
  8. Лакаев С.Н., Абдухакимов С.Х. Пороговые эффекты в системе двух фермионов на оптической решётке // Теор. мат. физ. 2020. Т. 203. № 2. С. 251-268.
  9. Лакаев С.Н., Улашов С.С. Существование и аналитичность связанных состояний двухчастичного оператора Шрёдингера на решётке // Теор. мат. физ. 2012. Т. 170. № 3. С. 393-408.
  10. Gesztesy F., Holden H. A unified approach to eigenvalues and resonances of Schr"odinger operators using Fredholm determinants // J. Math. Anal. Appl. 1987. V. 123. № 1. P. 181-198.
  11. Борисов Д.И. Возмущение края существенного спектра волновода с окном. I. Убывающие резонансные решения // Пробл. мат. анализа. 2014. Т. 77. С. 19-54.
  12. Borisov D.I., Zezyulin D.A. Sequences of closely spaced resonances and eigenvalues for bipartite complex potentials // Appl. Math. Lett. 2020. V. 100. ID 106049.
  13. Klopp F. Resonances for large one-dimensional "ergodic" systems // Analysis and PDE. 2016. V. 9. № 2. P. 259-352.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023