Efficient Acceleration of Electrons by Moderate-Power Femtosecond Laser Pulses

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The relativistic self-trapping of a laser pulse is an efficient mechanism for the acceleration of electrons, which
allows one to achieve an extreme charge of a high-energy particle beam and the corresponding conversion
coefficient of laser energy. It has been shown that the compression of the femtosecond laser pulse in this
regime using the innovative compression after compressor approach (CafCA) [E.A. Khazanov,
S.Yu. Mironov, and G. Mourou, Phys. Usp. 62, 1096 (2019)] to extremely short durations keeping the energy
of the laser beam significantly increases the efficiency of particle acceleration. This effect has been illustrated
on the example of the Multitera laser facility for the project implemented at the Russian National Center for
Physics and Mathematics.

Sobre autores

O. Vays

Lebedev Physical Institute, Russian Academy of Sciences; Center of Fundamental and Applied Research, Dukhov All-Russia Research Institute of Automatics

Email: ovais@lebedev.ru
Moscow, 119991 Russia; Moscow, 127030 Russia

M. Lobok

Lebedev Physical Institute, Russian Academy of Sciences; Center of Fundamental and Applied Research, Dukhov All-Russia Research Institute of Automatics

Email: ovais@lebedev.ru
Moscow, 119991 Russia; Moscow, 127030 Russia

A. Solov'ev

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: ovais@lebedev.ru
Nizhny Novgorod, 603950 Russia

S. Mironov

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: ovais@lebedev.ru
Nizhny Novgorod, 603950 Russia

E. Khazanov

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: ovais@lebedev.ru
Nizhny Novgorod, 603950 Russia

V. Bychenkov

Lebedev Physical Institute, Russian Academy of Sciences; Center of Fundamental and Applied Research, Dukhov All-Russia Research Institute of Automatics

Autor responsável pela correspondência
Email: ovais@lebedev.ru
Moscow, 119991 Russia; Moscow, 127030 Russia

Bibliografia

  1. E. A. Khazanov, S. Yu. Mironov, and G. Mourou, Phys.- Uspekhi 62, 1096 (2019).
  2. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
  3. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002).
  4. H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
  5. W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, Cs. T'oth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, Phys. Rev. Lett. 113, 245002 (2014).
  6. A. J. Gonsalves, K. Nakamura, J. Daniels et al. (Collaboration), Phys. Rev. Lett. 122, 084801 (2019).
  7. V. Yu. Bychenkov, M. G. Lobok, V. F. Kovalev, and A. V. Brantov, Plasma Phys. Control. Fusion 61, 124004 (2019).
  8. M. G. Lobok, A. V. Brantov, and V. Yu. Bychenkov, Phys. Plasmas 26, 123107 (2019).
  9. V. F. Kovalev and V. Yu. Bychenkov, Phys. Rev. E 99, 043201 (2019).
  10. V. Yu. Bychenkov and V. F. Kovalev, Radiophys. Quantum Electron. 63, 742 (2021).
  11. S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, Phys. Rev. Lett. 74, 710 (1995).
  12. В. И. Таланов, Известия ВУЗов. Радиофизика 7, 564 (1964).
  13. R. Y. Chiao, E. Garmire, and C. Townes, Phys. Rev. Lett. 13, 479 (1964).
  14. С. А. Ахманов, А. П. Сухоруков, Р. В. Хохлов, ЖЭТФ 50, 1537 (1966).
  15. A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, V. V. Korobkin, A. M. Prokhorov, J. C. Solem, T. S. Luk, K. Boyer, and C. K. Rhodes, Phys. Rev. A 45, 5830 (1992).
  16. А. Комашко, С. Мушер, С. Турицын et al. (Collaboration), Письма в ЖЭТФ 62, 849 (1995).
  17. В. Ю. Быченков, М. Г. Лобок, Письма в ЖЭТФ 114, 650 (2021).
  18. G. Mourou, S. Mironov, E. Khazanov, and A. Sergeev, Eur. Phys. J. Spec. Top. 223, 1181 (2014).
  19. S. Yu. Mironov, S. Fourmaux, P. Lassonde, V. N. Ginzburg, S. Payeur, J.-C. Kie er, E. A. Khazanov, and G. Mourou, Appl. Phys. Lett. 116, 241101 (2020).
  20. S. Mironov, P. Lassonde, J.-C. Kie er, E. Khazanov, and G. Mourou, Eur. Phys. J. Spec. Top. 223, 1175 (2014).
  21. Ph. Lassonde, S. Mironov, S. Fourmaux, S. Payeur, E. Khazanov, A. Sergeev, J.-C. Kie er, and G. Mourou, Laser Phys. Lett. 13, 075401 (2016).
  22. S. Yu. Mironov, V. N. Ginzburg, I. V. Yakovlev, A. A. Kochetkov, A. A. Shaykin, E. A. Khazanov, and G. A. Mourou, Quantum Electron. 47, 614 (2017).
  23. V. Ginzburg, I. Yakovlev, A. Kochetkov, A. Kuzmin, S. Mironov, I. Shaikin, A. Shaykin, E. Khazanov, Opt. Express 29, 28297 (2021).
  24. A. Shaykin, V. Ginzburg, I. Yakovlev, A. Kochetkov, A. Kuzmin, S. Mironov, I. Shaikin, S. Stukachev, V. Lozhkarev, A. Prokhorov, and E. Khazanov, High Power Laser Sci. Eng. 9, E54 (2021).
  25. A. Soloviev, A. Kotov, M. Martyanov et al. (Collaboration), Opt. Express 30, 40584 (2022).
  26. V. Ginzburg, I. Yakovlev, A. Zuev, A. Korobeynikova, A. Kochetkov, A. Kuzmin, S. Mironov, A. Shaykin, I. Shaikin, E. Khazanov, and G. Mourou, Phys. Rev. A 101, 013829 (2020).
  27. C. Nieter, J. R. Cary, J.Comput. Phys. 196, 448 (2004).
  28. E. Esarey, C. B. Schroeder, W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
  29. S. P. D. Mangles, G. Genoud, M. S. Bloom, M. Burza, Z. Najmudin, A. Persson, K. Svensson, A. G. R. Thomas, and C.-G. Wahlstr¨om, Phys. Rev. ST Accel. Beams 15, 011302 (2012).
  30. M. G. Lobok, A. V. Brantov, D. A. Gozhev, and V. Yu. Bychenkov, Plasma Phys. Control. Fusion 60, 084010 (2018).
  31. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, Nature 431, 541 (2004).
  32. A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov, Plasma Phys. Control. Fusion 46, B179 (2004).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023