Molecular Dynamics Study of the Structural and Diffusion Properties of Dehydrated Layered Double Aluminum and Lithium Hydroxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An atomistic model of dehydrated Cl-doped double layer aluminum–lithium hydroxide LiAl2(OH)6Cl">LiAl2(OH)6Cl (DALH-Cl), which is a promising material for the sorption of lithium from weak brines, has been developed. The effective charges of the atoms of the system have been determined using the density derived electrostatic and chemical (DDEC6) methods. A molecular dynamics analysis of DALH-Cl has been performed within the developed model. The structural characteristics of three atomic pairs in metallic layers of DALH-Cl and the probability density distribution of atoms in the direction perpendicular to these layers have been calculated. The temperature dependence of the diffusion coefficient of lithium atoms in the space between metallic layers in the temperature range of 325–450 K has been evaluated.

作者简介

V. Luk'yanchuk

Moscow Institute of Physics and Technology (National Research University);Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lukianchuk.vg@phystech.edu
141701, Dolgoprudnyi, Moscow region, Russia;125412, Moscow, Russia

A. Lankin

Moscow Institute of Physics and Technology (National Research University);Joint Institute for High Temperatures, Russian Academy of Sciences

Email: alex198508@yandex.ru
141701, Dolgoprudnyi, Moscow region, Russia;125412, Moscow, Russia

G. Norman

Moscow Institute of Physics and Technology (National Research University);Joint Institute for High Temperatures, Russian Academy of Sciences;HSE University

编辑信件的主要联系方式.
Email: norman@ihed.ras.ru
141701, Dolgoprudnyi, Moscow region, Russia;125412, Moscow, Russia;101000, Moscow, Russia

参考

  1. H. Bae and Y. Kim, Mater. Adv. 2, 3234 (2021).
  2. Y. Liu, B. Ma, Y. Lu¨, C. Wang, and Y. Chen, Int. J. Miner. Metall. Mater. 30, 209 (2023).
  3. A. Khalil, S. Mohammed, R. Hashaikeh, and N. Hilal, Desalination 528, 115611 (2022).
  4. M. Lal and A. T. Howe, J. Chem. Soc., Chem.Commun. 15, 737 (1980).
  5. M. P. Paranthaman, L. Li, J. Luo, T. Hoke, H. Ucar, B. A. Moyer, and S. Harrison, Environ. Sci. Technol. 51, 13481 (2017).
  6. А. Б. Алхасов, Д. А. Алхасова, А. Ш. Рамазанов, М. А. Каспарова, Теплоэнергетика 6, 25 (2016).
  7. А. Б. Алхасов, Д. А. Алхасова, А. Ш. Рамазанов, М. А. Каспарова, Теплоэнергетика 7, 17 (2017).
  8. L. Wu, L. Li, S. F. Evans, T. A. Eskander, B. A. Moyer, Z. Hu, P. J. Antonick, S. Harrison, M. P. Paranthaman, R. Riman, and A. Navrotsky, J. Am. Ceram. Soc. 102, 2398 (2019).
  9. A. V. Besserguenev, T. D. Dzhambazov, O. V. Magdysyuk, and P. G. Bruce, Chem. Mater. 9, 241 (1997).
  10. D. G. Costa, A. B. Rocha, R. Diniz, W. F. Souza, S. S. X. Chiaro, and A. A. Leitao, J. Phys. Chem. C 114, 14133 (2010).
  11. Y. Zhang, X. Cheng, C. Wu, J. K¨ohler, and S. Deng, Molecules 24, 2667 (2019).
  12. Н. Д. Кондратюк, В. В. Писарев, УФН 193, 437 (2023).
  13. Н. М. Щелкачев, Р. Е. Рыльцев, Письма в ЖЭТФ 102, 732 (2015).
  14. В. Р. Белослудов, К. В. Гец, Р. К. Жданов, Ю. Ю. Божко, Р. В. Белослудов, Л.-Дж. Чен, Письма в ЖЭТФ 115, 144 (2022).
  15. Е. О. Хазиева, Н. М. Щелкачев, А. О. Типеев, Р. Е. Рыльцев, ЖЭТФ 164 (2023), принята в печать.
  16. J. Chen and L. Li, Письма в ЖЭТФ 112, 119 (2020).
  17. В. Н. Рыжов, Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок, УФН 190(5), 449 (2020).
  18. R. T. Cygan, J. J. Liang, and A. G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004).
  19. R. T. Cygan, J. A. Greathouse, and A. G. Kalinichev, J. Phys. Chem. C 125, 17573 (2021).
  20. N. Kim, A. Harale, T. T. Tsotsis, and M. Sahimi, J. Chem. Phys. 127, 224701 (2007).
  21. G. M. Lombardo, G. C. Pappalardo, F. Punzo, F. Costantino, U. Costantino, and M. Sisani, Eur. J. Inorg. Chem. 2005, 5026 (2005).
  22. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, J. Phys. Chem. A 105, 9396 (2001).
  23. T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, C. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, and A. C. T. van Duin, npj Comput Mater 2, 15011 (2016).
  24. I. Sissoko, E. T. Iyagba, R. Sahai, and P. Biloen, J. Solid State Chem. 60, 283 (1985).
  25. S.-T. Zhang, H. Yan, M. Wei, D. G. Evans, and X. Duan, J. Phys. Chem. C 116, 3421 (2012).
  26. E. V. Tararushkin, V. V. Pisarev, and A. G. Kalinichev, Cement and Concrete Research 156, 106759 (2022).
  27. G. P'erez-S'anchez, T. L. P. Galvao, J. Tedim, and J. R. B. Gomes, Appl. Clay Sci. 165, 164 (2018).
  28. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).
  29. N. G. Limas and T. A. Manz, RSC Adv. 6, 45727 (2016).
  30. B. Delley, J. Chem. Phys. 113, 7756 (2000).
  31. W. Tang, E. Sanville, and G. Henkelman, J. Phys. Condens. Matter 21, 084204 (2009).
  32. M. Pekka and N. Lennart, J. Phys. Chem. A 105, 9954 (2001).
  33. P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), J. Phys. Condens. Matter 21, 395502 (2009).
  34. A. P. Thompson, H. M. Aktulga, R. Berger et al. (Collaboration), Comput. Phys.Commun. 271, 10817 (2022).
  35. Е. А. Лобашев, А. С. Антропов, В. В. Стегайлов, ЖЭТФ 163, 201 (2023).
  36. A. Antropov and V. Stegailov, J. Nucl. Mater. 573, 154123 (2023).
  37. A. B. Belonoshko, J. Fu, and G. Smirnov, Phys. Rev. B 104, 104103 (2021).
  38. A. B. Belonoshko, S. I. Simak, W. Olovsson, and O. Yu. Vekilova, Phys. Rev. B 105, L180102 (2022).
  39. V. G. Baidakov and A. O. Tipeev, J. Non-Cryst. Solids 503-504, 302 (2019).
  40. N. D. Kondratyuk, G. E. Norman, and V. V. Stegailov, J. Chem. Phys. 145, 204504 (2016).
  41. N. Kondratyuk, D. Lenev, and V. Pisarev, J. Chem. Phys. 152, 191104 (2020).
  42. J. T. Bullerjahn, S. von Bu¨low, and G. Hummer, J. Chem. Phys. 153, 024116 (2020).
  43. D. M. Heyes, E. R. Smith, and D. Dini, J. Chem. Phys. 150, 174504 (2019).
  44. A. O. Tipeev, E. D. Zanotto, and J. P. Rino, J. Phys. Chem. C 122, 28884 (2018).
  45. V. I. Deshchenya, N. D. Kondratyuk, A. V. Lankin, and G. E. Norman, J. Mol. Liq. 367, 120456 (2022).
  46. О. В. Кашурин, Н. Д. Кондратюк, А. В. Ланкин, Г. Э. Норман, Журнал физической химии 97, 836 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023