Пространственно неоднородное сверхбыстрое размагничивание никелевого магнитоплазмонного кристалла

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В эксперименте по субпикосекундному лазерному размагничиванию одномерного полностью никелевого магнитоплазмонного кристалла наблюдается уменьшение величины сверхбыстрого магнитооптического эффекта Керра на 50 % при плотности энергии размагничивающего фемтосекундного импульса, сравнимой с величиной, необходимой для достижения аналогичных значений в тонких пленках. Расчеты показывают, что такое уменьшение не соответствует снижению намагниченности всей поверхности на 50 %, а является результатом появления размагниченных и не размагниченных участков поверхности.

Об авторах

И. А. Новиков

МГУ имени М. В. Ломоносова

Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

М. А. Кирьянов

МГУ имени М. В. Ломоносова

Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

А. Ю. Фролов

МГУ имени М. В. Ломоносова

Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

В. В. Попов

МГУ имени М. В. Ломоносова

Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

Т. В. Долгова

МГУ имени М. В. Ломоносова

Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

А. А. Федянин

МГУ имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: fedyanin@nanolab.phys.msu.ru
119991, Москва, Россия

Список литературы

  1. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
  2. M. Pankratova, I. P Miranda, D. Thonig, M. Pereiro, E. Sj¨oqvist, A. Delin, O. Eriksson, and A. Bergman. Phys. Rev. B 106, 174407 (2022).
  3. B. Mueller and B. Rethfeld. Phys. Rev. B 90, 144420 (2014).
  4. B. Koopmans, J. J.M. Ruigrok, F. Dalla Longa, and W. J.M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
  5. K. Carva, M. Battiato, and P.M. Oppeneer, Phys. Rev. Lett. 107, 207201 (2011).
  6. Z. Zheng, Q. Zheng, and J. Zhao. Phys. Rev. B 105, 085142 (2022).
  7. U. Atxitia and O. Chubykalo-Fesenko. Phys. Rev. B 84, 144414 (2011).
  8. K. Krieger, J. Dewhurst, P. Elliott, S. Sharma, and E. Gross, J. Chem. Theory Comput. 11, 4870 (2015).
  9. S.R. Acharya, V. Turkowski, G. Zhang, and T. S. Rahman, Phys. Rev. Lett. 125, 017202 (2020).
  10. H. Hamamera, F. S.M. Guimar aes, M. dos Santos Dias, and S. Lounis, Commun. Phys. 5, 16 (2022).
  11. A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. F¨ohlisch, P.M. Oppeneer, and C. Stamm, Nat. Mater. 12, 332 (2013).
  12. G. Salvatella, R. Gort, K. B¨uhlmann, S. D¨aster, A. Vaterlaus, and Y. Acremann, Struct. Dyn. 3, 055101 (2016).
  13. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  14. K. Kuiper, G. Malinowski, F. Dalla Longa, and B. Koopmans, J. Appl. Phys. 109, 07D316 (2011).
  15. Y. Kivshar, Nano Lett. 22, 3513 (2022).
  16. A.A. Popkova, I.M. Antropov, G. I. Tselikov, G.A. Ermolaev, I. Ozerov, R.V. Kirtaev, S.M. Novikov, A.B. Evlyukhin, A.V. Arsenin, V.O. Bessonov, V. S. Volkov, and A.A. Fedyanin, Laser Photonics Rev. 16, 2100604 (2022).
  17. Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, Phys. Rev. B, 100, 115303 (2019).
  18. А.М. Черняк, М. Г. Барсукова, А.С. Шорохов, А.И. Мусорин, А.А. Федянин, Письма в ЖЭТФ 111, 40 (2020)
  19. A.M. Chernyak, M.G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A.A. Fedyanin, JETP Lett. 111, 46 (2020).
  20. D.O. Ignatyeva, D. Karki, A.A. Voronov, M.A. Kozhaev, D.M. Krichevsky, A. I. Chernov, M. Levy, and V. I. Belotelov, Nat. Commun. 11, 5487 (2020).
  21. Д.А. Шилкин, А.А. Федянин, Письма вЖЭТФ 115, 157 (2022)
  22. D.A. Shilkin and A.A. Fedyanin, JETP Lett. 115, 136 (2022).
  23. B. I. Afinogenov, V.O. Bessonov, I.V. Soboleva, and A.A. Fedyanin, ACS Photonics 6, 844 (2019).
  24. K.A. Willets and R.P. van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
  25. N. Maccaferri, A. Gabbani, F. Pineider, T. Kaihara, T. Tapani, and P. Vavassori, Appl. Phys. Lett. 122, 120502 (2023).
  26. V.G. Kravets, A.V. Kabashin, W. L. Barnes, and A.N. Grigorenko, Chem. Rev. 118, 5912 (2018).
  27. A. I. Musorin, A.V. Chetvertukhin, T.V. Dolgova, H. Uchida, M. Inoue, B. S. Luk'yanchuk, and A.A. Fedyanin, Appl. Phys. Lett. 115, 151102 (2019).
  28. W. L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003).
  29. M.R. Shcherbakov, P.P. Vabishchevich, A.Yu. Frolov, T.V. Dolgova, and A.A. Fedyanin, Phys. Rev. B 90, 201405 (2014).
  30. D.V. Murzin, A.Yu. Frolov, K.A. Mamian, V.K. Belyaev, A.A. Fedyanin, and V.V. Rodionova, Opt. Mater. Express 13, 171 (2023).
  31. A.N. Koya, M. Romanelli, J. Kuttruff et al. (Collaboration), Appl. Phys. Rev. 10, 021318 (2023).
  32. D. Ryabov, O. Pashina, G. Zograf, S. Makarov, and M. Petrov, Nanophotonics 11, 3981 (2022).
  33. G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S.V. Makarov, S. S. Kruk, and Y. Kivshar, ACS Photonics 9, 567 (2022).
  34. M.A. Kiryanov, A.Yu. Frolov, I.A. Novikov, P.A. Kipp, P.K. Nurgalieva, V.V. Popov, A.A. Ezhov, T.V. Dolgova, and A.A. Fedyanin, APL Photonics 7, 026104 (2022).
  35. V.K. Belyaev, V.V. Rodionova, A.A. Grunin, M. Inoue, and A.A. Fedyanin, Sci. Rep. 10, 7133 (2020).
  36. A.Yu. Frolov, M.R. Shcherbakov, and A.A. Fedyanin, Phys. Rev. B 101, 045409 (2020).
  37. M. Kataja, F. Freire Fernandez, J. Witteveen, T. Hakala, P. T¨orm¨a, and S. Dijken, Appl. Phys. Lett. 112, 072406 (2017).
  38. H. Xu, G. Hajisalem, G. Steeves, R. Gordon, and B.-C. Choi, Sci. Rep. 5, 15933 (2015).
  39. I.A. Novikov, M.A. Kiryanov, P.K. Nurgalieva, A.Yu. Frolov, V.V. Popov, T.V. Dolgova, and A.A. Fedyanin, Nano Lett. 20, 8615 (2020).
  40. M. Taghinejad, H. Taghinejad, Z. Xu, K.-T. Lee, S.P. Rodrigues, J. Yan, A. Adibi, T. Lian, and W. Cai, Nano Lett. 18, 5544 (2018).
  41. A. Schirato, M. Maiuri, A. Toma, S. Fugattini, R. Proietti Zaccaria, P. Laporta, P. Nordlander, G. Cerullo, A. Alabastri, and G. Della Valle, Nat. Photon. 14, 723 (2020).
  42. G.V. Hartland, Chem. Rev. 111, 3858 (2011).
  43. М.А. Кирьянов, Г.С. Останин, Т.В. Долгова, М. Иноуэ, А.А. Федянин, Письма вЖЭТФ 117, 201 (2023)
  44. M.A. Kiryanov, G. S. Ostanin, T.V. Dolgova, M. Inoue, and A.A. Fedyanin, JETP Lett. 117, 196 (2023).
  45. C. Voisin, D. Christofilos, N. Del Fatti, F. Vall'ee, B. Pr'evel, E. Cottancin, J. Lerm'e, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
  46. T. Roth, A. J. Schellekens, S. Alebrand, O. Schmitt, D. Steil, B. Koopmans, M. Cinchetti, and M. Aeschlimann, Phys. Rev. X 2, 021006 (2012).
  47. K. Krieger, P. Elliott, T. M¨uller, N. Singh, J. Dewhurst, E. Gross, and S. Sharma, J. Phys. Condens. Matter 29, 224001 (2017).
  48. U. Bierbrauer, S.T. Weber, D. Schummer, M. Barkowski, A.-K. Mahro, S. Mathias, H.C. Schneider, B. Stadtm¨uller, M. Aeschlimann, and B. Rethfeld, J. Phys., Condens. Matter 29, 244002 (2017).
  49. С.И. Анисимов, Б.Л. Капелиович, Т.Л. Перельман, ЖЭТФ 66, 776 (1974).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023