Взаимодействие солнечных нейтрино с ядрами 128Te и 130Te

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано взаимодействие солнечных нейтрино с изотопами 128,130Te с учетом резонансной структуры их зарядово-обменных силовых функций S(E). Проанализированы, как экспериментальные данные по силовым функциям S(E), полученные в реакциях (3He, t), так и силовые функции S(E), рассчитанные в микроскопической теории конечных ферми-систем. Исследована резонансная структура силовой функции S(E), выделены Гамов — Теллеровский, аналоговый и пигми-резонансы. Проведены расчеты сечений захвата σ(E) солнечных нейтрино для рассматриваемых двух изотопов с учетом резонансной структуры силовой функции S(E) и проанализировано влияние резонансов на энергетическую зависимость σ(E). Получено, что при расчетах сечения σ(E) необходимо учитывать резонансную структуру силовой функции S(E).

Об авторах

Ю. С. Лютостанский

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"

Email: fazliakhmetov@phystech.edu
Россия, Москва

А. Н. Фазлиахметов

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"; Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук; Федеральное государственное автономное образовательное учреждение высшего образования Московский физико-технический институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: fazliakhmetov@phystech.edu
Россия, Москва; Москва; Москва

Б. К. Лубсандоржиев

Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук

Email: fazliakhmetov@phystech.edu
Россия, Москва

Н. А. Белогорцева

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"

Email: fazliakhmetov@phystech.edu
Россия, Москва

Г. А. Коротеев

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"; Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук; Федеральное государственное автономное образовательное учреждение высшего образования Московский физико-технический институт (национальный исследовательский университет)

Email: fazliakhmetov@phystech.edu
Россия, Москва; Москва; Москва

А. Ю. Лютостанский

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"

Email: fazliakhmetov@phystech.edu
Россия, Москва

В. Н. Тихонов

Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"

Email: fazliakhmetov@phystech.edu
Россия, Москва

Список литературы

  1. Dolinski M., Poon A., Rodejohann W. // Annu. Rev. Nucl. Part. Sci. 2019. V. 69. P. 219.
  2. Formaggio J.A., Zeller G.P. // Rev. Mod. Phys. 2012. V. 84. P. 1307.
  3. Frekers D., Alanssari M. // Eur. Phys. J. A. 2018.V. 54. P. 177.
  4. Ina´cio A.S. (for the SNO+ Collaboration) // PoS (PANIC2021). 2022. V. 274.
  5. Andringa S., Arushanova E., Asahi S. et al. // Adv. High Energy Phys. 2016. V. 2016. Art. No. 6194250.
  6. Cattadori C.M., Salamida F. // Universe. 2021 V. 7. P. 314
  7. Alfonso K., Armatol A., Augier C. et al. // J. Low Temp. Phys. 2023 V. 211. P. 375.
  8. Meng Y., Wang Z., Tao Y. et al. // Phys. Rev. Lett. 2021. V. 127. Art. No. 261802.
  9. Aalbers J., Akerib D.S., Akerlof C.W. et al. // Phys. Rev. Lett. 2023. V. 131. Art. No. 041002.
  10. Aprile E., Abe K., Agostini F. et al. // Phys. Rev. Lett. 2022. V. 129. Art. No. 161805.
  11. Elliott S.R., Engel J. // J. Physics G. 2004. V. 30. P. 183.
  12. Billard J., Figueroa-Feliciano E., Strigari L. // Phys. Rev. D2014. V. 89. Art. No. 023524.
  13. Lutostansky Yu.S. // EPJ Web Conf. 2018. V. 194. Art. No. 02009.
  14. Лютостанский Ю.С. // Ядерн. физика. 2019. Т. 82. С. 440; Lutostansky Yu.S. // Phys. Atom. Nucl. 2019. V. 82. P. 528.
  15. Гапонов Ю.В., Лютостанский Ю.С. // Письма в ЖЭТФ. 1972. Т. 15. С. 173; Gaponov Yu.V., Lyutostanskii Yu.S. // JETP Lett. 1972. V. 15. P. 120.
  16. Гапонов Ю.В., Лютостанский Ю.С. // Ядерн. физика. 1974. Т. 19. С. 62; Gaponov Yu.V., Lyutostanskii Yu.S. // Sov. J. Nucl. Phys. 1974. V. 19. P. 33.
  17. Doering R.R., Galonsky A., Patterson D.M., Bertsch G.F. // Phys. Rev. Lett. 1975. V. 35. P. 1691.
  18. Galonsky A., Doering R.R., Patterson D.M., Bertini G.F. // Phys. Rev. 1976. V. 14. P. 748.
  19. Лютостанский Ю.С. // Письма в ЖЭТФ. 2017. Т. 106. С. 9; Lutostansky Yu.S. // JETP Lett. 2017. V. 106. P. 7.
  20. Лютостанский Ю.С., Тихонов В.Н. // Ядерн. физика. 2018. Т. 81. С. 515; Lutostansky Yu.S., Tikhonov V.N. // Phys. Atom. Nucl. 2018. V. 81. P. 540.
  21. Лютостанский Ю.С., Осипенко А.П., Тихонов В.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 539; Lutostansky Yu.S., Osipenko A.P., Tikhonov V.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 488.
  22. Puppe P., Lennarz A., Adachi T. et al. // Phys. Rev. C. 2012. V. 86. Art. No. 044603.
  23. Wang M., Huang W.J., Kondev F.G. et al. // Chin. Phys. C. 2021. V. 45. Art. No. 030003.
  24. Inghram M.G., Reynolds J.H. // Phys. Rev. 1949. V. 76. P. 1265.
  25. Inghramand M.G., Reynolds J.H. // Phys. Rev. 1950 V. 78. P. 822.
  26. Alduino C., Alfonso K., Artusa D.R. et al. // J. Instrumentation. 2016. V. 11. Art. No. 07009.
  27. Adams D.Q., Alduino C., Alfonso K. et al. // Phys. Rev. Lett. 2020. V. 124. Art. No. 122501.
  28. Adams D.Q., Alduino C., Alfonso K. et al. // Phys. Rev. Lett. 2022. V. 129. Art. No. 222501.
  29. Ebert J., Fritts M., Gehre D. et al. // Phys. Rev. C. 2016. V. 94. Art. No. 024603.
  30. Arnold R., Augier C., Baker J. et al. // Phys. Rev. Lett. 2011. V. 107. Art. No. 062504.
  31. Ushakov N.A., Fazliakhmetov A.N., Gangapshev A.M. et al. // J. Phys. Conf. Ser. 2021. V. 1787. Art. No. 012037.
  32. Fazliakhmetov A.N., Lutostansky Yu.S., Lubsandorzhiev B.K. et al. // Phys. Atom. Nucl. 2023. V. 86. P. 736.
  33. Pham K., Janecke J. et al. // Phys. Rev. C. 1995. V. 51. P. 526.
  34. Fazliakhmetov A.N., Inzhechik L.V., Koroteev G.A. et al. // AIP Conf. Proc. 2019. V. 2165. Art. No. 020015.
  35. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. М.: Наука, 1983; Migdal A.B. Theory of finite Fermi systems and applications to atomic nuclei. NY.: Interscience Publishers, 1967.
  36. Лютостанский Ю.С., Белогорцева Н.А., Коротеев Г.А. и др. // Ядерн. физика. 2022. Т. 85. С. 409; Lutostansky Yu.S., Belogortseva N.A., Koroteev G.A. et al. // Phys. Atom. Nucl. 2022. V. 85. P. 551.
  37. Lutostansky Yu.S., Fazliakhmetov A.N., Koroteev G.A. et al. // Phys. Lett. B. 2022. V. 826. Art. No. 136905.
  38. Borzov I.N., Fayans S.A., Trykov E.L. // Nucl. Phys. A. 1995. V. 584. P. 335.
  39. Лютостанский Ю.С. // Ядерн. физика. 2020. Т. 83. С. 34; Lutostansky Yu.S. // Phys. Atom. Nucl. 2020. V. 83. P. 33.
  40. Гапонов Ю.В., Лютостанский Ю.С. // Ядерн. физика. 1972. Т. 16. С. 484; Gaponov Yu.V., Lyutostanskii Yu.S. // Sov. J. Nucl. Phys. 1972. V. 16. P. 270.
  41. Ву Ц.С., Мошковский С.А. Бета-распад. М.: Атомиздат, 1970; Wu C.S.; Moszkowski S.A. Beta Decay. NY.: Interscience Publishers, 1966.
  42. Behrens M., Janecke J. Elementary particles, nuclei and atoms. Landolt-Bornstein Group I: nuclear physics and technology. V. 4. Springer, 1969.
  43. Фазлиахметов А.Н., Лютостанский Ю.С., Коротеев Г.А. и др. // ЭЧАЯ. 2023. Т. 54. С. 668; Fazliakhmetov A.N., Lutostansky Yu.S., Koroteev G.A. et al. // Phys. Part. Nucl. 2023 V. 54. P. 547.
  44. Workman R.L., Burkert V.D., Crede V. et al. // Progr. Theor. Exp. Phys. 2022. V. 2022. P. 083C01.
  45. Боровой А.А., Лютостанский Ю.С., Панов И.В. и др. // Письма в ЖЭТФ. 1987. Т. 45. С. 521; Borovoi A.A., Lutostansky Yu.S., Panov I.V. et al. // JETP Lett. 1987. V. 45. P. 665.
  46. Lutostansky Yu.S., Shulgina N.B. // Phys. Rev. Lett. 1991. V. 67. P. 430.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024