Эффективность наземного приемного терминала для квантовой связи
- Авторы: Барбышев К.А.1,2, Дуплинский А.В.1,3, Хмелев А.В.1, Курочкин В.Л.1,4
-
Учреждения:
- ООО «КуСпэйс Технологии»
- Национальный исследовательский университет «МЭИ»
- Национальный исследовательский университет «Высшая школа экономики»
- Национальный исследовательский технологический университет «МИСИС»
- Выпуск: Том 88, № 6 (2024)
- Страницы: 967-974
- Раздел: Люминесценция и лазерная физика
- URL: https://ter-arkhiv.ru/0367-6765/article/view/654666
- DOI: https://doi.org/10.31857/S0367676524060193
- EDN: https://elibrary.ru/PFOTOB
- ID: 654666
Цитировать
Аннотация
Исследована возможность практической реализации квантового канала связи для распределения ключей шифрования между спутником Micius и мобильной приемной оптической станцией. С использованием теоретической оценки получены численные значения основных параметров такой линии связи: уровень потерь, скорость генерации ключа и его длина, а также коэффициент квантовых битовых ошибок.
Полный текст

Об авторах
К. А. Барбышев
ООО «КуСпэйс Технологии»; Национальный исследовательский университет «МЭИ»
Автор, ответственный за переписку.
Email: k.barbyshev@goqrate.com
Россия, Москва; Москва
А. В. Дуплинский
ООО «КуСпэйс Технологии»; Национальный исследовательский университет «Высшая школа экономики»
Email: k.barbyshev@goqrate.com
Россия, Москва; Москва
А. В. Хмелев
ООО «КуСпэйс Технологии»
Email: k.barbyshev@goqrate.com
Россия, Москва
В. Л. Курочкин
ООО «КуСпэйс Технологии»; Национальный исследовательский технологический университет «МИСИС»
Email: k.barbyshev@goqrate.com
Россия, Москва; Москва
Список литературы
- Трушечкин А.С., Киктенко Е.О., Кронберг Д.А., Федоров А.К. // УФН. 2021. Т. 191. № 1. С. 93; Trushechkin A.S., Kiktenko E.O., Kronberg D.A., Fedorov A.K. // Phys. Usp. 2021. V. 64. No. 1. P. 88.
- Балыгин К.А., Кулик С.П., Молотков С.Н. // Письма в ЖЭТФ. 2022. Т. 116. № 2. С. 128; Balygin K.A., Kulik S.P., Molotkov S.N. // JETP Lett. 2022. V. 116. No. 2. P. 128.
- Курочкин В.Л., Неизвестный И.Г. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 195; Kurochkin V.L., Neizvestnyj I.G. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 173.
- Wang S., Yin Z.Q., He D.Y. et al. // Nature Photonics. 2022. V. 16. No. 2. P. 154.
- Хмелев А.В., Дуплинский А.В., Майборода В.Ф. и др. // Письма в ЖТФ. 2021. Т. 47. № 17. С. 46; Khmelev A.V., Duplinsky A.V., Mayboroda V.F. et al. // Tech. Phys. Lett. 2021. V. 47. No. 12. P. 858.
- Liao S.K., Cai W.Q., Liu W.Y. et al. // Nature. 2017. V. 549. No. 7670. P. 43.
- Yin J., Li Y.H., Liao S.K. et al. // Nature. 2020. V. 582. No. 7813. P. 501.
- Liao S.K., Cai W.Q., Handsteiner J. et al. // Phys. Rev. Lett. 2018. V. 120. No. 3. Art. No. 030501.
- Liao S.K., Yong H.L., Liu C. et al. // Nature Photonics. 2017. V. 11. No. 8. P. 509.
- Bedington R., Arrazola J.M., Ling A. // NPJ Quantum Inf. 2017. V. 3. Art. No. 30.
- Khmelev A.V., Ivchenko E.I., Miller A.V. et al. // Entropy. 2023. V. 25. No. 4. Art. No. 670.
- Kim I.I., McArthur B., Korevaar E.J. // Proc. SPIE. 2001. V. 4214. P. 26.
- Young A.T., Irvine W.M. // Astron. J. 1967. V. 72. No. 8. P. 945.
- Ma X., Qi B., Zhao Y., Lo H.K. // Phys. Rev. A. 2005. V. 72. No. 1. Art. No. 012326.
- Kiktenko E.O., Trushechkin A.S., Lim C.C.W. et al. // Phys. Rev. Appl. 2017. V. 8. No. 4. Art. No. 044017.
Дополнительные файлы
