Advanced Quasistatic Approximation
- 作者: Tuev P.V.1,2, Spitsyn R.I.1,2, Lotov K.V.1,2
-
隶属关系:
- Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- 期: 卷 49, 编号 2 (2023)
- 页面: 154-164
- 栏目: УСКОРЕНИЕ ЧАСТИЦ В ПЛАЗМЕ
- URL: https://ter-arkhiv.ru/0367-2921/article/view/668589
- DOI: https://doi.org/10.31857/S0367292122601436
- EDN: https://elibrary.ru/NXAFCV
- ID: 668589
如何引用文章
全文:
详细
The quasistatic approximation (QSA) is an efficient method of simulating laser- and beam-driven plasma wakefield acceleration, but it becomes imprecise if some plasma particles make long longitudinal excursions in a strongly nonlinear wave, or if waves with non-zero group velocity are present in the plasma, or the plasma density gradients are sharp, or the beam shape changes rapidly. We present an extension to QSA that is free from many of its limitations and retains its main advantages of speed and reduced dimensionality. The new approach takes into account the exchange of information between adjacent plasma layers. We introduce the physical model, describe its numerical implementation, and compare the simulation results with available analytical solutions and other codes.
作者简介
P. Tuev
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia
R. Spitsyn
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia
K. Lotov
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
编辑信件的主要联系方式.
Email: p.v.tuev@inp.nsk.su
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia
参考
- Albert F., Couprie M.E., Debus A., Downer M.C., Faure J., Flacco A., Gizzi L.A., Grismayer T., Huebl A., Joshi C., Labat M., Leemans W.P., Maier A.R., Mangles S.P.D., Mason P., Mathieu F., Muggli P., Nishiuchi M., Oster-hoff J., Rajeev P.P., Schramm U., Schreiber J., Tho-mas A.G.R., Vay J.-L., Vranic M., Zeil K. // New J. Phys. 2021. V. 23. P. 031101. https://doi.org/10.1088/1367-2630/abcc62
- Vay J.-L., Lehe R. // Rev. Accelerator Science Technology. 2016. V. 9. P. 165. https://doi.org/10.1142/S1793626816300085
- Lotov K.V. // Nuclear Instr. Methods A. 1998. V. 410. P. 461. https://doi.org/10.1016/S0168-9002(98)00178-8
- Burdakov A.V., Kudryavtsev A.M., Logatchov P.V., Lo-tov K.V., Petrenko A.V., Skrinsky A.N. // Plasma Phys. Rep. 2005. V. 31. P. 292. [Бурдаков А.В., Кудряв-цев А.М., Логачев П.В., Лотов К.В., Петренко А.В., Скринский А.Н. // Физика плазмы, 2005, Т. 31, C. 327–335.]https://doi.org/10.1134/1.1904145
- Schroeder C.B., Esarey E., Geddes C.G.R., Benedetti C., Leemans W.P. // Phys. Rev. ST Accel. Beams. 2010. V. 13. P. 101301. https://doi.org/10.1103/PhysRevSTAB.13.101301
- Nakajima K., Deng A., Zhang X., Shen B., Liu J., Li R., Xu Z., Ostermayr T., Petrovics S., Klier C., Iqbal K., Ruhl H., Tajima T. // Phys. Rev. ST Accel. Beams. 2011. V. 14. P. 091301. https://doi.org/10.1103/PhysRevSTAB.14.091301
- Schroeder C.B., Esarey E., Leemans W.P. // Phys. Rev. ST Accel. Beams, 2012. V. 15. P. 051301. https://doi.org/10.1103/PhysRevSTAB.15.051301
- Vay J.-L. // Phys. Rev. Lett. 2007. V. 98. P. 130405. https://doi.org/10.1103/PhysRevLett.98.130405
- Vay J.-L., Geddes C.G.R., Cormier-Michel E., Gro-te D.P. // J. Computational Phys. 2011. V. 230. P. 5908. https://doi.org/10.1016/j.jcp.2011.04.003
- Sprangle P., Esarey E., Ting A. // Phys. Rev. Lett. 1990. V. 64. P. 2011. https://doi.org/10.1103/PhysRevLett.64.2011
- Mora P., Antonsen T.M. // Phys. Plasmas. 1997. V. 4. P. 217. https://doi.org/10.1063/1.872134
- Jain N., Palastro J., Antonsen T.M., Mori W.B., An W. // Phys. Plasmas, 2015. V. 22. P. 023103. https://doi.org/10.1063/1.4907159
- Sosedkin A.P., Lotov K.V. // Nuclear Instr. Methods A. 2016. V. 829. P. 350. https://doi.org/10.1016/j.nima.2015.12.032
- An W., Decyk V.K., Mori W.B., Antonsen Jr. T.M. // J. Computational Phys. 2013. V. 250. P. 165. https://doi.org/10.1016/j.jcp.2013.05.020
- Mehrling T., Benedetti C., Schroeder C.B., Osterhoff J. // Plasma Phys. Control. Fusion, 2014. V. 56. P. 084012. https://doi.org/10.1088/0741-3335/56/8/084012
- Pukhov A., Farmer J.P. // Phys. Rev. Lett. 2018. V. 121. P. 264801. https://doi.org/10.1103/PhysRevLett.121.264801
- Zhu W., Palastro J.P., Antonsen T.M. // Phys. Plasmas, 2012. V. 19. P. 033105. https://doi.org/10.1063/1.3691837
- Huang C., Decyk V.K., Ren C., Zhou M., Lu W., Mo-ri W.B., Cooley J.H., Antonsen Jr.T.M., Katsouleas T. // J. Computational Phys. 2006. V. 217. P. 658. https://doi.org/10.1016/j.jcp.2006.01.039
- Спицын Р.И. Магистерская дисс. Новосибирский государственный университет, 2016. https://www.inp.nsk.su/~dep_plasma/dip/Spitsyn_m.pdf.
- Terzani D., Benedetti C., Schroeder C.B., Esarey E. // Phys. Plasmas. 2021. V. 28. P. 063105. https://doi.org/10.1063/5.0050580
- Sprangle P., Esarey E., Krall J., Joyce G., Phys. Rev. Lett., 1992. V. 69. P. 2200. https://doi.org/10.1103/PhysRevLett.69.2200
- Esarey E., Sprangle P., Krall J., Ting A., Joyce G. // Phys. Fluids B. 1993. V. 5. P. 2690. https://doi.org/10.1063/1.860707
- Lotov K.V. // Phys. Plasmas. 1998. V. 5. P. 785. https://doi.org/10.1063/1.872765
- Zgadzaj R., Silva T., Khudyakov V.K., Sosedkin A., Al-len J., Gessner S., Li Z., Litos M., Vieira J., Lotov K.V., Hogan M.J., Yakimenko V., Downer M.C. // Nature Comm. 2020. V. 11. P. 4753. https://doi.org/10.1038/s41467-020-18490-w
- Khudiakov V.K., Lotov K.V., Downer M.C. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 045003. https://doi.org/10.1088/1361-6587/ac4523
- Benedetti C., Schroeder C.B., Geddes C.G.R., Esarey E., Leemans W.P. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 014002. https://doi.org/10.1088/1361-6587/aa8977
- Zhu W., Palastro J.P., Antonsen T.M. // Phys. Plasmas. 2013. V. 20. P. 073103. https://doi.org/10.1063/1.4813245
- Lotov K.V. // Phys. Rev. ST Accel. Beams. 2003. V. 6. P. 061301. https://doi.org/10.1103/PhysRevSTAB.6.061301
- https://lcode.info/.
- See the LCODE manual at https://lcode.info/site-files/manual.pdf.
- Crank J., Nicolson P. // Mathematical Proceed. Cambridge Philosophical Soc. 1947. V. 43. P. 50. https://doi.org/10.1017/S0305004100023197
- Peaceman D.W., Rachford H.H. // J. Soc. Industrial Applied Math. 1955. V. 3. P. 28. https://doi.org/10.1137/0103003
- Douglas J. // J. Soc. Industrial Applied Math. 1955. V. 3. P. 42. https://doi.org/10.1137/0103004
- Esarey E., Leemans W.P. // Phys. Rev. E. 1999. V. 59. P. 1082. https://doi.org/10.1103/PhysRevE.59.1082
- Lehe R., Kirchen M., Andriyash I.A., Godfrey B.B., Vay J.-L. // Computer Phys. Communications. 2016. V. 203. P. 66. https://doi.org/10.1016/j.cpc.2016.02.007
- Luo J., Chen M., Zhang G.-B., Yuan T., Yu J.-Y., Shen Z.-C., Yu L.-L., Weng S.-M., Schroeder C. B., Esa-rey E. // Phys. Plasmas. 2016. V. 23. P. 103112. https://doi.org/10.1063/1.4966047
- Massimo F., Beck A., Derouillat J., Grech M., Lobet M., Perez F., Zemzemi I., Specka A. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 124001. https://doi.org/10.1088/1361-6587/ab49cf
- Terzani D., Londrillo P. // Computer Phys. Communicat. 2019. V. 242. P. 49. https://doi.org/10.1016/j.cpc.2019.04.007
- Pukhov A., Meyer-ter-Vehn J. // Appl. Phys. B, 2002. V. 74. P. 355. https://doi.org/10.1007/s003400200795
- Malka V. // Phys. Plasmas, 2012. V. 19. P. 055501. https://doi.org/10.1063/1.3695389
- Esarey E., Schroeder C.B., Leemans W.P. // Rev. Mod. Phys. 2009. V. 81. P. 1229. https://doi.org/10.1103/RevModPhys.81.1229
- Morshed S., Antonsen T.M., Palastro J.P. // Phys. Plasmas, 2010. V. 17. P. 063106. https://doi.org/10.1063/1.3432685
- Tuev P.V., Lotov K.V. Proc. 47th EPS Conference on Plasma Phys. 2021. P. 2.2004. http://ocs.ciemat.es/EPS2021PAP/pdf/P2.2004.pdf.
- Irkutsk Supercomputer Center of SB RAS (available at: http://ocs.ciemat.es/EPS2021PAP/pdf/P2.2004.pdf).
补充文件
