Acceleration of metal flyers at the Angara-5-1 facility

封面

如何引用文章

全文:

详细

The results of flyer acceleration up to the velocity of 10 km/s at the Angara-5-1 facility at the current of 5 MA by the magnetic field pressure are presented. 1D and 2D simulation of aluminum flyer acceleration is performed. The simulation results agree with each other and with the experimental data.

全文:

受限制的访问

作者简介

G. Oleinik

Troitsk Institute for Innovation and Fusion Research

编辑信件的主要联系方式.
Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

A. Branitsky

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

M. Galanin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: oleinik@triniti.ru
俄罗斯联邦, Moscow

E. Grabovski

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

I. Tishchenko

National Research Nuclear University MEPhI

Email: oleinik@triniti.ru
俄罗斯联邦, Moscow

K. Gubskii

National Research Nuclear University MEPhI

Email: oleinik@triniti.ru
俄罗斯联邦, Moscow

А. Kuznetsov

National Research Nuclear University MEPhI

Email: oleinik@triniti.ru
俄罗斯联邦, Moscow

Yu. Laukhin

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

A. Lototskii

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

A. Rodin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: oleinik@triniti.ru
俄罗斯联邦, Moscow

V. Smirnov

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

S. Tkachenko

Troitsk Institute for Innovation and Fusion Research; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow; Moscow

I. Frolov

Troitsk Institute for Innovation and Fusion Research

Email: oleinik@triniti.ru
俄罗斯联邦, Troitsk, Moscow

参考

  1. Александров В.В., Браницкий А.В., Грабовский Е.В., Лаухин Я.Н., Олейник Г.М., Ткаченко С.И., Фролов И.Н., Хищенко К.В. // Ядерная физика и инжиниринг. 2018. Т. 9, № 2. С. 141. h ttps://doi.org/ 10.1134/S207956291706001X
  2. Альбиков З.А., Велихов Е.П., Веретенников А.И., Глухих В.А., Грабовский Е.В., Грязнов Г.М., Гусев О.А., Жемчужников Г.Н., Зайцев В.И., Золотовский О.А., Истомин Ю.А., Козлов О.В., Крашенинников И.С., Курочкин С.С., Латманизова Г.М., Матвеев В.В., Минеев Г.В., Михайлов В.Н., Недосеев С.Л., Олейник Г.М., Певчев В.П., Перлин А.С., Печерский О.П., Письменный В.Д., Рудаков Л.И., Смирнов В.П., Царфин В.Я., Ямпольский И.Р. // Атомная энергия. 1990. Т. 68. Вып. 1. С. 2 6.
  3. Koshkin D. S., Gubskiy K. L., Mikhailuk A. V., Kuznetsov A. P. // Proc. Optics and Measurement Conf. Liberec, Czech Republic, 2014. / Ed. by Jana Kovačičinová, Tomáš Vít . 2015. // SPIE Conf. Proc. 2015. V. 9442. P. 94420M. h ttps://doi.org/10.1117/12.2175923
  4. Barker L.M., Hollenbach R.E. // J. Appl. Phys. 1972. V. 43. P. 4669. h ttps://doi.org/10.1063/1.1660986
  5. Knudson M.D., Desjarlais M.P. // J. Appl. Phys. 2021. V. 129. P. 210904. h ttps://doi.org/10.1063/5.0050878
  6. Браницкий А. В., Грабовский Е. В., Джангобегов В. В, Лаухин Я. Н., Митрофанов К. Н., Олейник Г. М., Сасоров П. В., Ткаченко С. И., Фролов И. Н. // Физика плазмы, 2016. Т. 42. С. 342. h ttps://doi.org/ 10.7868/S0367292116040028
  7. Fortov V.E., Khishchenko K.V., Levashov P.R., Lomonosov I.V. / /Nucl. Instr. Meth. Phys. Res. A. 1998. V. 415. P. 604.
  8. Хищенко К. В. // ТВТ. 2023. Т. 61. С. 477. h ttps://doi.org/10.31857/S0040364423030134
  9. Орешкин В. И., Бакшт Р. Б., Лабецкий А. Ю., Русских А. Г., Шишлов А. В., Левашов П. Р., Хищенко К. В., Глазырин И. В. // Журн. техн. физ. 2004. Т. 74. Вып. 7. С. 38.https://journals.ioffe.ru/articles/8307
  10. Галанин М.П., Лотоцкий А.П., Родин А.С. // Дифференциальные уравнения. 2016. Т. 52, № 7. С. 927. h ttps://doi.org/ 10.1134/S0374064116070086
  11. Зарубин В.С., Кувыркин Г.Н. Математические модели механики и электродинамики сплошной среды. М.: МГТУ им. Н.Э. Баумана, 2008.
  12. Коробейников С.Н., Олейников А.А. // Дальневосточный Мат. Жур. 2011. Т. 11. Вып. 2. С. 155.
  13. Родин А.С. // Препринты ИПМ им. М.В. Келдыша № 54. М.: ИПМ им. М.В. Келдыша, 2023. h ttps://doi.org/ 10.20948/prepr-2023-54
  14. Воробьев А.А., Дремин А.Н., Канель Г.И. // ПМТФ. 1974. № 5. С. 94.
  15. Lemke R.W., Knudson M.D., Hall C.A., Haill T.A., Desjarlais P.M., Asay J.R., Mehlhorn T.A. // Phys. Plasmas. 2003. V. 10. P. 1092. h ttps :// doi. org /10.1063/1.1554740
  16. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of one of the variants of the central part of the concentrator. The arrows show the current flow, the solid black rectangle is the rod. On the left is without LiF, section and top view. On the right is with a 3 mm thick LiF crystal, section.

下载 (155KB)
3. Fig. 2. Three shadow images of laser probing of a striker with a LiF crystal; the interval between the first and second frames is 63.3 ns, between the second and third – 58.5 ns. The direction of propagation of the compression wave and its localization are shown by arrows. The initial position of the striker is on the right, where the arrows begin.

下载 (155KB)
4. Fig. 3. Shift X in vacuum (without LiF) of the back surface of the striker at different moments in time according to the results of laser probing. Vertically – shift of the back surface of the striker, horizontally – the moment of probing time. The results obtained in one shot are connected by segments. The sizes of the rectangles correspond to the errors.

下载 (186KB)
5. Fig. 4. The result of measuring the velocity of a certain point on the back surface of the striker using two interferometers: a quadrature-differential unequal-arm interferometer (QDI) and a quadrature unequal-arm interferometer with an additional channel for monitoring the intensity at the input (QDI) with different delay lines (delay line QDI – 1280 m/s/strip, QDI – 7730 m/s/strip).

下载 (130KB)
6. Fig. 5. Evolution of (a) the position and (b) the velocity of different layers of the striker: 1 – rear surface of the striker; 2 – central layer (x = h0 /2) and 3 – front surface of the striker.

下载 (110KB)
7. Fig. 6. Evolution of (a) temperature and (b) density in different layers of the striker: 1 – rear surface of the striker; 2 – central layer (x = h0 /2) and 3 – front surface of the striker.

下载 (166KB)
8. Fig. 7. Evolution of (a) pressure and (b) current density in different layers of the striker: 1 – rear surface of the striker; 2 – central layer (x = h0 /2) and 3 – front surface of the striker.

下载 (72KB)
9. Fig. 8. Distribution of (a) temperature and (b) pressure across the thickness of the striker at different moments in time: 1 – 80; 2 – 160; 3 – 200; 4 – 240; 5 – 340 and 6 – 480 ns; horizontal lines: temperatures of 7 – melting and 8 – boiling of aluminum at atmospheric pressure. The coordinate of the front surface of the striker is 900 μm, the rear surface is 0 μm.

下载 (105KB)
10. Fig. 9. Computational domain. Half of the cross-section of the device.

下载 (50KB)
11. Fig. 10. Speed ​​(Vsurf), density (Dens), temperature (Temp) of a point located on the axis of symmetry on the back surface of the striker for two models. The numbers in the legends indicate the model number.

下载 (108KB)
12. Fig. 11. Distribution of density on the anode section at times of 200 ns (left), 300 ns (center) and 400 ns (right) for calculation 2. On the Ox axis at the initial time, the striker occupied an area from 4 mm to 5 mm.

下载 (243KB)
13. Fig. 12. Distributions of velocity (Vх), density (Dens), temperature (lg _ T) at different moments of time for calculation 2. Numbers in the legends are time in ns. Horizontally – coordinate of the calculation area, on the OX axis at the initial moment of time the striker occupied an area from 4 mm to 5 mm. Temperature is measured in Kelvin.

下载 (498KB)
14. Fig. 13. Processing of the results of one shot #6133 with a LiF crystal. Dependence of the displacement of the reflecting surface on time (line) based on the results of interferometry and three points of displacement for three frames in Fig. 2 based on the results of shadow laser probing.

下载 (132KB)

版权所有 © Russian Academy of Sciences, 2024