Dynamics of a Discharge Initiated by a Powerful Femtosecond Laser Pulse in Atmospheric Pressure Air in Pre-Breakdown Electrical Fields

Capa

Citar

Texto integral

Resumo

Numerical modeling of the dynamics of a discharge initiated by a high-power femtosecond laser pulse in air at atmospheric pressure in pre-breakdown fields was carried out. Calculations were conducted within the framework of a 1D-axisymmetric model that describes the evolution of the radial profiles of the main parameters of the discharge under study. The model includes a system of reaction that determine gas heating and a detailed description of the kinetic processes in a given discharge, as well as a system of gas-dynamic equations to describe the expansions of the heated channel. The results of calculations of the breakdown time of the discharge gap are conсistent with the measurement data over the entire studied range of electric field strengths, E = 9–17 kV/cm. It is shown that one of the key factors determining the evolution of the parameters of a given discharge is the rate of gas heating.

Texto integral

Acesso é fechado

Sobre autores

N. Popov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Autor responsável pela correspondência
Email: NPopov@mics.msu.su
Rússia, Moscow

N. Bogatov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Rússia, Nizhny Novgorod

A. Bocharov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Rússia, Moscow

E. Mareev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: NPopov@mics.msu.su
Rússia, Nizhny Novgorod

Bibliografia

  1. Zhao X.M., Diels J.-C., Wang C.Y., Elizondo J.M. // IEEE J. Quantum Electron. 1995. V. 31. P. 599.
  2. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. // Opt. Lett. 1995. V. 20(1). P. 73.
  3. Koopman D.W., Wilkerson T.D. // J. Appl. Phys. 1971. V. 42. P. 1883.
  4. Greig J.R., Koopman D.W., Fernsler R.F., Pechacek R.E., Vitkovitsky I.M., Ali A.W. // Phys. Rev. Lett. 1978. V. 41. P. 174.
  5. Fujiwara E., Izawa Y., Kawasaki Z., Matsuura K., Yamanaka C. // The Review of Laser Engineering. 1991. V. 19(6). P. 528–537.
  6. Miki M., Aihara Y., Shindo T. // J. Phys. D: Appl. Phys. 1993. V. 26. P. 1244–1252.
  7. Shindo T., Aihara Y., Miki M., Suzuki T. // IEEE Tran. on Power Delivery. 1993. V. 8. P. 1.
  8. Aihara Y., Shindo T., Miki M., Suzuki T. // Electrical Engineering in Japan. 1993. V. 113(4). P. 66
  9. Honda C., Takuma T., Muraoka K., Akasaki M., Kinoskita F., Katakira O. // Electrical Engineering in Japan. 1994. V. 114(7). doi: 10.1002/EEJ.4391140704
  10. Wang D., Kawasaki Z.-I., Matsuura K., Shimada Y., Uchida S., Yamanaka C., Fujiwara E., Izawa Y., Simokura N., Sonoi Y. // J. Gheophys. Res. D. 1994. V. 99. P. 16907–16912.
  11. Shimada Y., Uchida S., Yasuda H., Motokoshi S., Yamanaka C., Kawasaki Z.-I., Yamanaka T., Ishikubo Y., Adachi M. // Proc. SPIE 3423, Second GR-I International Conference on New Laser Technologies and Applications, (14 July 1998). https://doi.org/10.1117/12.316594
  12. Uchida S., Shimada Y., Yasuda H., Motokoshi S., Yamanaka C., Yamanaka T., Kawasaki Z.-I., Tsubakimoto K. // J. Opt. Technol. 1999. V. 66(3). P. 199.
  13. Bodrov S., Bukin V., Tsarev M., Murzanev A., Garnov S., Aleksandrov N., Stepanov A. // Optics Express. 2011. V. 19. P. 6829–6835.
  14. Bodrov S., Aleksandrov N., Tsarev M., Murzanev A., Kochetov I., Stepanov A. // Phys. Rev. 2013. V. 87. P. 053101.
  15. Comtois D., Chien C.Y., Desparois A., Ge´nin F., Jarry G., Johнсton T.W., Kieffer J.-C., La Fontaine B., Martin F., Mawassi R., Pépin H., Rizk F.A.M., Vidal F. // Appl. Phys. Lett., 2000. V. 76. P. 819–821.
  16. Pépin H., Comtois D., Vidal F., Chien C.Y., Desparois A., Johнсton T.W., Kieffer J.C., La Fontaine B., Martin F., Rizk F.A.M. // Phys. Plasmas 2001. V. 8. P. 2532–2539.
  17. Rodriguez M., Sauerbrey R., Wille H., Wöste L., Fujii T., André Y.-B., Mysyrowicz A., Klingbeil L., Rethmeier K., Kalkner W., Kasparian J., Salmon E., Yu J., Wolf J.-P. // Opt. Lett. 2002. V. 27. P. 772.
  18. Gordon D.F., Ting A., Hubbard R.F., Briscoe E., Manka C., Slinker S.P., Baronavski A.P., Ladouceur H.D., Grounds P.W., Girardi P.G. // Physics of Plasmas. 2003. V. 10. P. 4530.
  19. Kasparian J., Rodriguez M., Meґjean G., Yu J., Salmon E., Wille H., Bourayou R., Frey S., Andreґ Y.-B., Mysyrowicz A., Sauerbrey R., Wolf J.-P., WoЕste L. // Science. 2003. V. 301. P. 61.
  20. Ackermann R., Stelmaszczyk K., Rohwetter P., Méjean G., Salmon E., Yu J., Kaspariana J., Méchain G., Bergmann V., Schaper S., Weise B., Kumm T., Rethmeier K., Kalkner W., Wolf J. P. // Appl. Phys. Lett. 2004. V. 85. P. 23.
  21. Ackermann R., Mechain G., Mejean G., Bourayou R., Rodriguez M., Stelmaszczyk K., Kasparian J., Yu J., Salmon E., Tzortzakis S., Andre Y.-B., Bourrillon J.-F., Tamin L., Cascelli J.-P., Campo C., Davoise C., Mysyrowicz A., Sauerbrey R., Woste L., Wolf J.-P. // Appl. Phys. B. 2006. V. 82. P. 561–566.
  22. Méjean G., Ackermann R., Kasparian J., Salmon E., Yu J., and Wolf J.-P. Appl. Phys. Lett. 2006. V. 88. P. 021101.
  23. Fujii T., Miki M., Goto N., Zhidkov A., Fukuchi T., Oishi Y., Nemoto K. // Physics of Plasmas. 2008. V. 15. P. 013107.
  24. Zhang Z., Lu X., Liang W.-X., Hao Z.-Q., Zhou M.-L., Wang Z.-H., Liu X. and Zhang J. // Optics Express. 2009. V. 17. P. 3461–3468.
  25. Leonov S.B., Firsov A.A., Shurupov M.A., Michael J.B., Shneider M.N., Miles R.B., Popov N.A. // Physics of Plasmas 2012. V. 19. P. 123502.
  26. Daigle J.-F., Theberge F., Lassonde P., Kieffer J.-C., Fujii T., Fortin J., Chateauneuf M., Dubois J. // Appl. Phys. Lett. 2013. V. 103. P. 184101.
  27. Arantchouk L., Point G., Brelet Y., Prade B., Carbonnel J., Andre Y.-B., Mysyrowicz A., Houard A. // J. Appl. Phys. 2014. V. 116. P. 013303.
  28. Schmitt-Sody A., Lucero A., French Da., Latham W.P., White W., Roach W.P. // Optical Engineering 2014. V. 53. P. 051504.
  29. Théberge F., Daigle J.-F., Kieffer J.-C., Vidal F., Châteauneuf M. // Sci. Rep. 2017. V. 7. P. 40063.
  30. Produit T., Walch P., Schimmel G., Mahieu B., Herkommer C., Jung R., Metzger T., Michel K., Andre Y.-B., Mysyrowicz A., Houard A., Kasparian J., Wolf J.-P. // Optics Express. 2019. V. 27. P. 11339.
  31. Vidal F., Comtois D., Ching-Yuan Chien, Desparois A., La Fontaine B., Johнсton T.W., Kieffer J.-C., Mercure H.P., Pépin H., Rizk F.A. // IEEE Traнс. Plasma Science. 2000. V. 28. P. 418.
  32. Tzortzakis S., Prade S.B., Franco M., Mysyrowicz A. // Phys. Rev. E. 2001. V. 64. P. 57401.
  33. Cheng Y.-H., Wahlstrand J.K., Jhajj N., Milchberg H.M. // Opt. Express. 2013. V. 21. P. 4740.
  34. Lahav O., Levi L., Orr I., Nemirovsky R.A., Nemirovsky J., Kaminer I., Segev M., Cohen O. // Phys. Rev. A. 2014. V. 90. P. 021801(R).
  35. Point G., Milian C., Couairon A., Mysyrowicz A., Houard A. // J. Phys. B. 2015. V. 48. P. 094009.
  36. Богатов Н.А., Степанов А.Н. // Физика плазмы. 2023. Т. 49. С. 198.
  37. Александров Н.Л., Базелян Э.М., Богатов Н.А., Киселев М.А., Степанов А.Н. // Физика плазмы. 2008. Т. 34. С. 1142.
  38. Petrova Tz.B., Ladouceur H.D., Baronavski A.P. // Physics of Plasmas. 2008. V. 15. P. 053501.
  39. Hagelaar G.J., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  40. Phelps A.V., Pitchford L.C. // Phys Rev A. 1985. V. 31. P. 2932–2949.
  41. Bragiнсkiy O.V., Vasilieva A.N., Klopovskiy K.S., Kovalev A.S., Lopaev D.V., Proshina O.V., Rakhimova T.V., Rakhimov A.T. // J. Phys. D Appl. Phys. 2005. V. 38. P. 3609.
  42. Kovalev A.S., Lopaev D.V., Mankelevich Y.A., Popov N.A., Rakhimova T.V., Poroykov A.Y., Carroll D.L. // J. Phys. D Appl. Phys. 2005. V. 38. № 14. P. 2360.
  43. Александров Н.Л., Кочетов И.В. // ТВТ. 1987. Т. 25. С. 766–771.
  44. Kossyi I.A., Kostiнсky A.Y., Matveev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1992. V. 1. P. 207–227.
  45. Popov N. A. // J. Phys. D: Appl. Phys. 2011. V. 44. P. 285201.
  46. Popov N. A. // Plasma Sources Sci. Technol. 2016. V. 25. P. 044003.
  47. Biberman L.M., Vorob’ev V.S., Yakubov I.T. Kinetics of non-equilibrium low-temperature plasmas. Plenum, New York. 1987.
  48. Da Silva C.L., Pasko V.P. // J. Geophys. Res. 2013. V. 118. P. 13561–13590.
  49. Акишев Ю.С., Демьянов А.В., Кочетов И.В., Напартович А.П., Пашкин С.В., Пономаренко В.В., Певгов В.Г., Подобедов В.Б. // ТВТ. 1982. Т. 20. С. 818–827.
  50. Florescu A.I., Mitchell J.B.A. Physics Reports. 2006. V. 430. P. 277.
  51. Benilov M.S., Naidis G.V. // J. Phys. D: Appl. Phys. 2003. V. 36. P. 1834.
  52. Herron J.T. // J. Phys. Chem. Ref. Data. 1999. V. 28(5). P. 1453.
  53. Popov N.A. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 355204.
  54. Shkurenkov I., Burnette D.D., Lempert W.R., Adamovich I.V. // Plasma Sources Sci. Technol. 2014. V. 23. P. 065003.
  55. Capitelli M., Ferreira C.M., Gordiets B.F., Osipov A.I. Plasma Kinetics in Atmospheric Gases. Berlin: Springer. 2000.
  56. Степанов А.Н., Бабин А.А., Киселев А.М., Сергеев А.М. // Квантовая электроника. 2001. Т. 31. С. 623.
  57. Демьянов А.В., Жданок С.А., Кочетов И.В., Напартович А.П., Певгов В.Г., Старостин А.Н. // ПМТФ. 1981. № 3. С. 5–10.
  58. Petrova Tz.B., Ladouceur H.D., Baronavski A.P. // Phys. Rev. 2007. V. 76. P. 066405.
  59. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997.
  60. Guo B., Li X., Ebert U., Teunissen J. // Plasma Sources Sci. Technol. 2022. V. 31. P. 095011.
  61. Laux C.O., Spence T.G., Kruger C.H., Zare R.N. // Plasma Sources Sci. Technol. 2003. V. 12.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Temporal dynamics of the density of electrons, positive O2+ ions, N2(A) molecules, and oxygen atoms on the axis of the discharge channel in air

Baixar (94KB)
3. Fig. 2. Temporal dynamics of temperature and gas density at the axis of the discharge channel in air: R0 = 50 μm, E = 10 kV/cm, P = 760 Torr, T0 = 300 K

Baixar (89KB)
4. Fig. 3. Time dynamics of the mean vibrational quantum yield per N2 molecule, qv = εv /ħω and the Trinor number νTr on the discharge axis for the conditions of Fig. 1

Baixar (72KB)
5. Fig. 4. Time dependence of the gas heating intensity on the WT channel axis in processes (eV/mol - s-1) in processes: 1 - e + O2+ → O(3P) + O(3P,1D) + ΔE1; 2 - O(1D) + N2 → O(3P) + N2 + DE2; 3 - N2(B, C, a) + O2 → O(3P) + O(3P,1D) + ΔE3, 4 - in VV-exchange processes

Baixar (81KB)
6. Fig. 5. Dependence of the breakdown time on the applied field in air excited by a femtosecond laser pulse. P = 760 Torr, T0 = 300 K. Dots - experimental data [36], dashed curve 1 - calculation [37], solid curve 2 - calculation of this work

Baixar (75KB)
7. Fig. 6. Temporal dynamics of gas temperature at E = 10 kV/cm, P = 760 Torr, T0 = 300 K. Curve 1 - results of calculations [38], curve 2 - calculations of the present work

Baixar (77KB)
8. Fig. 7. Temporal dynamics of the reduced electric field E/N and volume rates of N2(C) molecules on the channel axis in the reactions: (Q1) e + N2 → e + N2(C); (Q2) N2(A) + N2(A) → N2(C) + N2

Baixar (77KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024