Length of Critical Streamers

Capa

Citar

Texto integral

Resumo

The concept of equipotential length of positive quasi-stationary streamers is introduced as a criterion for assessing their degree of isolation. The equipotential length of positive critical streamers (streamers moving in the minimum electric field sufficient for the unrestricted propagation of a positive streamer) in the normal atmosphere is defined, both for individual streamers and those forming a thin bundle of streamers. The dependence of the equipotential length of positive quasi-stationary streamers on external field, velocity, radius, and electron concentration in the streamer head is investigated. A criterion is proposed for analytical models of quasi-stationary streamers, providing an additional independent equation to the system of equations describing the dynamics of quasi-stationary streamers, valid only for critical streamers. The insignificance of the influence of electrodes located at a distance greater than its equipotential length from the streamer head on the quasi-stationary streamer is proven, confirming the adequacy of using the equipotential length to assess the isolation of positive streamers.

Texto integral

Acesso é fechado

Sobre autores

N. Bogatov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: bogatov@appl.sci-nnov.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997.
  2. Qin J., Pasko V.P. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 435202. doi: 10.1088/0022-3727/47/43/435202.
  3. Li X., Guo B., Sun A., Ebert U., Teunissen J. // Plasma Sources Sci. Technol. 2022. V. 31. 065011. doi: 10.1088/1361-6595/ac7747.
  4. Guo B., Li X., Ebert U., Teunissen J. // Plasma Sources Sci. Technol. 2022. V. 31. 095011. doi: 10.1088/1361-6595/ac8e2e.
  5. Phelps C.T. // J. Geophys. Res. 1971. V. 76. P. 5799. doi: 10.1029/JC076i024p05799.
  6. Dutton J. // J. Phys. Chem. Ref. Data. 1975. V. 4. P. 3–577. doi: 10.1063/1.555525.
  7. Александров Н.Л. // УФН. 1988. Т. 154. Вып. 2. С. 177. doi: 10.3367/UFNr.0154.198802a.0177.
  8. Хаксли Л., Кромптон Р. Диффузия и дрейф электронов в газах. М: Мир, 1977.
  9. Kostinskiy A.Yu., Bogatov N.A., Syssoev V.S., Mareev E.A., Andreev M.G., Bulatov M.U., Sukharevsky D.I., Rakov V.A. // Journal of Geophysical Research: Atmospheres. V. 127, e2021JD035821. doi: 10.1029/2021JD035821.
  10. Bogatov N.A., Syssoev V.S., Sukharevsky D.I., Orlov, A.I., Rakov V.A., Mareev E.A. 2022. An experimental study of the breakthrough-phase and return-stroke processes in long sparks. Journal of Geophysical Research: Atmospheres. V. 127, e2021JD035870. https://doi.org/10.1029/2021JD035870
  11. Горин Б.Н., Шкилев А.В. // Электричество. 1976. № 6. С. 31.
  12. Allen N., Ghaffar A. // J. Phys. D: Appl. Phys. 1995. V. 28. P. 331. doi: 10.1088/0022-3727/28/2/016
  13. Briels T.M.P., van Veldhuizen E.M., Ebert U. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 234008. doi: 10.1088/0022-3727/41/23/234008
  14. Горин Б.Н., Шкилев А.В. // Электричество. 1974. № 2. C. 29.
  15. Lehtinen N.G. // Radiophysics and Quantum Electronics. 2021. V. 64. № 1, P. 11. doi: 10.1007/s11141-021-10108-5
  16. Babaeva N.Yu., Naidis G.V. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 2423. doi: 10.1088/0022-3727/29/9/029
  17. Pancheshnyi S., Nudnova M., Starikovskii A. // Phys. Rev. E. 2005. V. 71. 016407. doi: 10.1103/PhysRevE.71.016407.
  18. Nudnova M.M., Starikovskii A.Yu. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 234003. doi: 10.1088/0022-3727/41/23/234003
  19. Nijdam S., van de Wetering F.M.J.H., Blanc R., van Veldhuizen E.M., Ebert U. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 145204. doi: 10.1088/0022-3727/43/14/145204
  20. Allen N.L., Mikropoulos P.N. // J. Phys. D: Appl. Phys. 1999. V. 32. P. 913. doi: 10.1088/0022-3727/32/8/012

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of the three-state sticking constant ka (a), electron-ion recombination coefficient αe (b), and electron mobility μ (c) on the parameter E/N obtained on the basis of data from [6-8]

Baixar (217KB)
3. Fig. 2. Dependences at E0 = 5 kV/cm

Baixar (184KB)
4. Fig. 3. Distribution of electron concentration, electric field strength, and chase charge in the channel of a positive critical streamer in a normal atmosphere. E0 = 5 kV/cm, a = 0.237, b = 2.22 (n0 = 1014 cm-3, rs = 0.1 mm, V = 107 cm/s). The dotted line shows the equipotential streamer length = 1.55

Baixar (104KB)
5. Fig. 4. Equipotential length of the critical streamer beam Lb as a function of the number of streamers in the beam M

Baixar (115KB)
6. Fig. 5. Equipotential length of the streamer as a function of E0 (a), n0 (b), rs (c) and V (d)

Baixar (310KB)
7. Fig. 6. Relation of the stationary streamer velocity Vm, determined from the condition ∂L(V)/∂V = 0, to the velocity V from Table 1 [3], depending on the field E0

Baixar (45KB)
8. Fig. 7. Relative changes in the parameters of the critical positive streamer at the contact of the streamer tail with the electrode at a distance Le from the streamer head as a function of the ratio of the distance Le to the streamer equipotential length L

Baixar (137KB)
9. Fig. 8. Relative field perturbation near the streamer head caused by the streamer charge image in planar electrodes as a function of the ratio of the distance from the streamer head to the corresponding electrode to the streamer equipotential length. The solid line refers to the electrode from which the streamer is moving away; the dashed line refers to the electrode to which the streamer is approaching; the dashed line is a function of 0.008(L/Le)2

Baixar (111KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024