Frequency Dependence of the Parameters of the Inductive RF Discharge Located in the Low-Value Magnetic Field

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this work, we carried out studies of the properties of an inductive RF discharge placed in a magnetic field with an induction of less than 70 G at frequencies of 2, 4 and 13.56 MHz. Experiments have shown that when operating at frequencies of 2 and 4 MHz at low powers of the RF generator, the range of existence of the discharge is limited by large magnetic fields. The efficiency of RF power input η non-monotonically depends on the magnitude of the magnetic field. The position of the main maximum η shifts to the region of higher B with increasing frequency, power of the RF generator and argon pressure, and at the same time the maximum broadens. An increase in frequency, power and argon pressure is accompanied by an increase in the absolute values of η. When operating at a frequency of 4 MHz, in addition to the main maximum η, a local maximum appears in the region B 35–70 G. With increasing pressure, a shift in the position of the local maximum and its smoothing is observed. Comparison of experimental data with calculated data allows us to conclude that the local maximum of plasma density observed at weak magnetic fields is associated with resonant excitation of waves in the plasma source. At a frequency of 2 MHz, the excited wave is close to a transverse helicon, and at a frequency of 13.56 MHz, its properties approach the Trivelpiece–Gold wave.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Nikonov

Lomonosov Moscow State University

Email: ekralkina@mail.ru
Ресей, Moscow

K. Vavilin

Lomonosov Moscow State University

Email: ekralkina@mail.ru
Ресей, Moscow

I. Zadiriev

Lomonosov Moscow State University

Email: ekralkina@mail.ru
Ресей, Moscow

S. Dvinin

Lomonosov Moscow State University

Email: ekralkina@mail.ru
Ресей, Moscow

E. Kralkina

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: ekralkina@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Ginzburg V.L., Rukhadze A.A. Waves in Magnetoplasma, Springer Verlag, Heidelberg, 1972.
  2. Perry A. J., Vender D., Boswell R. W. // J. Vacuum Sci. Technol. 1991. V. B9. P. 310. doi: 10.1116/1.585611.
  3. Charles C. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 163001. doi: 10.1088/0022-3727/42/16/163001
  4. Chen F.F., Chevalier G. // J. Vacuum Sci. Technol. 1991. V. 9. P. 310.
  5. Isayama S., Hada T., Shinohara Sh. // Plasma Fusion Res. 2018. V. 13. P. 1101014. doi: 10.1585/pfr.13.1101014
  6. Boswell R., Charles C., Alexander P., Dedrick J., Takahashi K. // IEEE Trans. Plasma Sci. 2011. V. 39. P. 2512. doi: 10.1109/TPS.2011.2143434
  7. Takahashi K. // Rev. Modern Plasma Phys. 2019. V. 3. P. 3. doi: 10.1007/s41614-019-0024-2.
  8. Masillo S., Romano F., Soglia R., Herdrich G., Roberts P., Boxberger A., Chan Y.A., Traub C., Fasoulas S., Smith K. et al. // 7th Russian-German Confer. on Electric Propulsion, 2018.
  9. Boswell R.W. // Phys. Lett. 1977 V. A33. P. 457. doi: 10.1016/0375-9601(70)90606-7.
  10. Boswell R.W., Chen F.F. // IEEE Trans. Plasma Sci. 1997. V. 25. P. 1229. doi: 10.1109/27.650898
  11. Boswell R.W., Chen F.F. // IEEE Trans. Plasma Sci. 1997 V. 25. P. 1246. doi: 10.1109/27.650899
  12. Chen F.F. // High Density Plasma Sources / Ed. O. A. Popov. Noyes publications, 1996. P. 1.
  13. Chen F.F. // Plasma Sources Sci. Technol. 2015. V. 24. P. 014001. doi: 10.1088/0963-0252/24/1/014001
  14. Shinohara Sh. // Adv. Phys.: X. 2013. V. 3. P. 1420424. doi: 10.1080/23746149.2017.1420424
  15. Isayama S., Hada T., Shinohara Sh. // Plasma Fusion Res. 2018. V. 13. P. 1101014. doi: 10.1585/pfr.13.1101014
  16. Chen F.F. // Plasma Phys. Contr. Fusion. 1991. V. 33. P. 339.
  17. Александров А.Ф., Рухадзе А.А., Кралькина Е.А., Обугов B.A., Рухадзе А.А. // ЖТФ. 1994. Т. 64. С. 53.
  18. Shamrai K.P., Taranov V.B. // Plasma Sources Sci. Technol. 1996. V. 5 P.475. doi: 10.1088/0963-0252/5/3/015
  19. Карташов И.Н., Кузелев М.В. // ЖЭТФ. 2020. Т. 158. С. 738. doi: 10.31857/S0044451020100168
  20. Chen F.F. // Phys. Plasmas. 2003. V. 10. P. 2586. doi: 10.1063/1.1575755
  21. Degeling A.W., Jung C.O., Boswell R.W., Ellingboe A.R. // Phys. Plasmas. 1996. V. 3. P. 2788. doi: 10.1063/1.871712
  22. Sato G., Oohara W., Hatakeyama R. // Plasma Sources Sci. Technol. 2007. V. 16. P. 734. doi: 10.1088/0963-0252/16/4/007
  23. Barada K.K., Chattopadhyay P. K., Ghosh J., Kumar S., Saxena Y.C. // Phys. Plasmas. 2013. V. 20. P. 042119. doi: 10.1063/1.4802823
  24. Barada K.R., Chattopadhyay P. K., Ghosh J., Kumar S., Saxena Y.C // Phys. Plasmas. 2013. V. 20. P. 012123. doi: 10.1063/1.4789456
  25. Chattopadhyay P.K., Barada K.K., Ghosh J., Sharma D., Saxena Y.C. // AIP Conf. Proc. 2014. V. 1582. P. 251. doi: 10.1063/1.4865362
  26. Cho S. // Phys. Plasmas. 2006. V. 13. P. 033504. doi: 10.1063/1.2179773
  27. Александров А.Ф., Бугров Г.Э., Вавилин К.В. Керимова И.К., Кондранин С.Г., Кралькина Е.А., Павлов В.Б., Плаксин В.Ю., Рухадзе А.А. // Физика плазмы. 2004. Т. 30. С. 434.
  28. Вавилин К.В., Рухадзе А.А., Ри М.Х., Плаксин В.Ю. // ЖТФ. 2004. Т. 74. С. 29.
  29. Кралькина Е. // УФН. 2008. Т. 178. С. 519. doi: 10.3367/UFNr.0178.200805f.0519
  30. Kralkina E.A., Rukhadze A.A., Nekliudova P.A., Pavlov V.B., Petrov A.K., Vavilin K.V. // AIP Advances 2018. V. 8. P. 035217. doi: 10.1063/1.5023631
  31. Kralkina E.A., Nikonov A.M., Vavilin K.V., Zadiriev I.I. // Plasma Sci. Technol. 2020. V. 22. P. 115404. doi: 10.1088/2058-6272/abb0dc
  32. Petrov A.K., Kralkina E.A., Nikonov A.M., Vavilin K.V., Zadiriev I.I. // Vacuum. 2020. V. 181. P. 109634. doi: 10.1016/j.vacuum.2020.109634
  33. Loeb H. // AIAA 7th Electric Propulsion Confer. 1969. P. 285.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of plasma source: 1 - quartz cylinder, 2 - vacuum chamber, 3 - metal flange, 4 - bottom electrode with a hole, 5 - spiral antenna, 6 - electromagnet; 7 - matching system; 8 - RF generator, 9 - probe, 10 - gas lead

Жүктеу (71KB)
3. Fig. 2. Typical magnetic field distribution along the axis of the IP. The current through the electromagnet is 6 A. The z coordinate is read from the upper flange

Жүктеу (131KB)
4. Fig. 3. Dependence of RF power embedding efficiency on the external magnetic field induction at RF generator powers: 1 - 300 W, 2 - 500 W, 3 - 800 W; f = 2 MHz, p = 0. 6 mTorr (a); f = 2 MHz, p = 6 mTorr (b); f = 4 MHz, p = 0.3 mTorr (c); f = 4 MHz, p = 3 mTorr (d); f = 13.56 MHz, p = 0.3 mTorr (e); f = 13.56 MHz, p = 3 mTorr (f)

Жүктеу (352KB)
5. Fig. 4. Dependence of RF power embedding efficiency on the external magnetic field induction at different argon pressures: 1 - 0.3 mTorr, 2 - 0.6 mTorr, 3 - 0.8 mTorr, 4 - 3 mTorr, 5 - 6 mTorr; f = 4 MHz, Pgen = 500 W

Жүктеу (92KB)
6. Fig. 5. Axial dependence of the amplitude (a-c) and phase (d-e) of the longitudinal RF magnetic field for operating frequencies of 2 MHz (a, d), 4 MHz (b, e), and 13.56 MHz (c, f); Pgen = 500 W, p = 0.8 mTorr. The area of the antenna location is marked in grey: 1 - 0 Gs, 2 - 24 Gs, 3 - 36 Gs, 4 - 48 Gs, 5 - 60 Gs

Жүктеу (379KB)
7. Fig. 6. Axial dependence of the longitudinal RF magnetic field amplitude for operating frequencies of 2 MHz (a) and 4 MHz (b), measured: 1 - at the plasma source axis, at distance 2 - 5 cm and 3 - 8.7 cm from the axis. Pgen = 500 W, p = 0.8 mTorr, B = 24 Gs. The area of the antenna location is marked in grey

Жүктеу (109KB)
8. Fig. 7. Dependence of the ion saturation current i+ on the distance from the top flange z at different distances from the FE axis r: 0 Gs (a), 36 Gs (b), 60 Gs (c)

Жүктеу (208KB)
9. Fig. 8. Dependence of the equivalent plasma resistance on the magnetic field induction calculated for values l = 1, 2, 3, 4; f = 13.56 MHz, p = 1 mTorr, ne = 1∙1011 cm-3

Жүктеу (70KB)
10. Fig. 9. Dependence of the equivalent plasma resistance on the induction of the external magnetic field for l = 2: 1 - f = 2 MHz, p = 1 mTorr; 2 - f = 4 MHz, p = 1 mTorr; 3 - f = 13.56 MHz, p = 1 mTorr; 4 - f = 13.56 MHz, p = 6 mTorr; ne = 1∙1011 cm-3

Жүктеу (100KB)
11. Fig. 10. Dependence of the calculated equivalent plasma resistance on the magnetic field; f = 13.56 MHz, p = 1 mTorr; 1 - ne = 1∙1010 cm-3, 2 - 3 ∙1010 cm-3, 3 - 1 ∙1011 cm-3, 4 - 3 ∙1011 cm-3

Жүктеу (80KB)
12. Fig. 11. Dependences of the calculated longitudinal, radial, and azimuthal electric fields on the value of the external magnetic field: 2 MHz (a), 13.56 MHz (b); 1 - Ez, 2 - Eφ, 3 - Er; ne = 1-1011 cm-3

Жүктеу (100KB)
13. Fig. 12. Dependence of the calculated amplitudes of the azimuthal and longitudinal components of the Travelpis-Gold (1) and helicon (2) waves on the external magnetic field: 2 MHz (a, b); 13.56 MHz (c, d); ne = 1 -1011 cm-3

Жүктеу (186KB)
14. Fig. 13. Dependence of the calculated efficiency of RF power insertion into the plasma source (a) and electron concentration (b) on the external magnetic field value: 1 - f = 2 MHz, p = 1 mTorr; 2 - f = 4 MHz, p = 1 mTorr; 3 - f = 13.56 MHz, p = 1 mTorr; 4 - f = 13.56 MHz, p = 6 mTorr; Pgen = 800 W, Rant = 1 ohm

Жүктеу (94KB)

© Russian Academy of Sciences, 2024