Study of Plasma Flow Velocity in an Open SMOLA Screw Trap

Cover Page

Cite item

Full Text

Abstract

The physics of confinement of a rotating plasma in a magnetic field with linear helical symmetry is being studied at the Institute of Nuclear Physics SB RAS on the open SMOLA trap. An indicator of the quality of confinement is the plasma flow velocity in the system. The paper describes the applied diagnostics based on the Mach probe under conditions of non-magnetized plasma, which made it possible to determine the longitudinal flow velocity in experiments. The measured longitudinal flow velocity was (0.5–5) · 106 cm/s in various operating modes of the installation. The dependence of the speed on the magnitude of the magnetic field corrugation is discussed. A reverse flow of trapped particles returning to the containment zone has been detected.

Full Text

Restricted Access

About the authors

A. A. Inzhevatkina

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

I. A. Ivanov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

V. V. Postupaev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

A. V. Sudnikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

M. S. Tolkachev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

V. O. Ustyuzhanin

Novosibirsk State University

Email: a.a.inzhevatkina@inp.nsk.su
Russian Federation, Novosibirsk

References

  1. Post R.F. // Nuclear. Fusion. 1987. V. 27. № 10. Р. 1579. doi: 10.1088/0029-5515/27/10/001
  2. Simonen T.C., Anikeev A., Bagryansky P., Beklemishev A., Ivanov A., Lizunov A., Maximov V., Prikhodko V., Tsidulko Yu. // Journal of Fusion Energy. 2010. V. 29. Р. 558. doi: 10.1007/s10894-010-9342-7
  3. Endrizzi D., Anderson J.K., Brown M., Egedal J., Geiger B., Harvey R.W., Ialovega M., Kirch J., Peterson E., Petrov Y.V., Pizzo J., Qian T., Sanwalka K., Schmitz O., Wallace J., Yakovlev D., Yu M., Forest C.B. // Journal of Plasma Physics. 2023. V. 89(5). Р. 975890501. doi: 10.1017/S0022377823000806
  4. Imai T., Ichimura M., Nakashima Y., Sakamoto M., Katanuma I., Yoshikawa M., Kariya T., Hirata M., Kohagura J., Minami R., Numakura T., Ikezoe R., Oki K., Sakamoto K. // Fusion Sci. Technol. 2013. V. 63. Р. 15. doi: 10.13182/FST13-1T29
  5. Gota H., Binderbauer M.W., Tajima T., Smirnov A., Putvinski S., Tuszewski M., Dettrick S.A., Gupta D.K., Korepanov S., Magee R.M., Park J., Roche T., Romero J.A., Trask E., Yang X., Yushmanov P., Zhai K., DeHaas T., Griswold M.E., Gupta S., Abramov S., Alexander A., Allfrey I., Andow R., Barnett B., Beall M., Bolte N.G., Bomgardner E., Bondarenko A., Ceccherini F., Chao L., Clary R., Cooper A., Deng C., Dunaevsky A., Feng P., Finucane C., Fluegge D., Galeotti L., Galkin S., Galvin K., Granstedt E.M., Hubbard K., Isakov I., Kaur M., Kinley J.S., Korepanov A., Krause S., Lau C.K., Lednev A., Leinweber H., Leuenberger J., Lieurance D., Madura D., Margo J., Marshall D., Marshall R., Matsumoto T., Matvienko V., Meekins M., Melian W., Mendoza R., Michel R., Mok Y., Morehouse M., Morris R., Morton L., Nations M., Necas A., Nicks S., Nwoke G., Onofri M., Ottaviano A., Page R., Parke E., Phung K., Player G., Sato I., Schindler T.M., Schroeder J.H., Sheftman D., Sibley A., Siddiq A., Signorelli M., Slepchenkov M., Smith R.J., Snitchler G., Sokolov V., Song Y., Steinhauer L.C., Stylianou V., Sweeney J., Titus J.B., Tkachev A., Tobin M., Ufnal J., Valentine T., Van Drie A.D., Ward J., Weixel C., White C., Wollenberg M., Ziaei S., the TAE Team, Schmitz L., Lin Z., Ivanov A.A., Asai T., Baltz E.A., Dikovsky M., Heavlin W.D., Geraedts S., Langmore I., Norgaard P.C., Von Behren R., Madams T., Kast A. and Platt J.C. // Nucl. Fusion. 2021. V. 61. P. 106039. doi: 10.1088/1741-4326/ac2521
  6. Yakovlev D., Chen Z., Bagryansky P., Bragin A., Kotelnikov I., Kuzmin E., Prikhodko V., Shikhovtsev I., Usov P., Wang Z., Zeng Q., Dong L., Zhang K., Ivanov A., Yu J. // Nucl. Fusion. 2022. V. 62(1). Р. 076017. doi: 10.1088/1741-4326/ac5224
  7. Burdakov A., Azhannikov A., Astrelin V., Beklemishev A., Burmasov V., Derevyankin G., Ivanenko V., Ivanov I., Ivantsivsky M., Kandaurov I., Konyukhov V., Kotelnikov I., Kovenya V., Kozlinskaya T., Kuklin K., Kuznetsov A., Kuznetsov S., Lotov K., Timofeev I., Makarov A., Mekler K., Nikolaev V., Popov S., Postupaev V., Polosatkin S., Rovenskikh A., Shoshin A., Shvab I., Sinitsky S., Sulyaev Yu., Stepanov V., Trunyov Yu., Vyacheslavov L., Zhukov V. // Fusion Sci. Technol. 2007. V. 51. P. 106. doi: 10.13182/FST07-A1327
  8. Bagryansky P.A., Anikeev A.V., Denisov G.G., Gospodchikov E.D., Ivanov A.A., Lizunov A.A., Kovalenko Yu.V., Malygin V.I., Maximov V.V., Korobeinikova O.A. // Nuclear Fusion. 2015. V. 55. P. 053009. doi: 10.1088/0029-5515/55/5/053009
  9. Амиров В.Х., Астрелин В.Т., Багрянский П.А., Беклемишев А.Д., Бурдаков А.В., Горбовский А.И., Котельников И.А., Магоммедов Э.М., Полосаткин С.В., Поступаев В.В., Приходько В.В., Савкин В.Я., Сковородин Д.И., Солдаткина Е.И., Соломахи А.Л., Сорокин А.В., Судников А.В., Христо М.С., Черноштанов И.С., Шиянков С.В., Щербаков В.И., Яковлев Д.В. // Физика плазмы. 2023. T. 49. № 9. doi: 10.31857/S0367292123600322
  10. Postupaev V.V., Batkin V.I., Burdakov A.V., Burmasov V.S., Ivanov I.A., Kuklin K.N., Lykova Yu.A., Melnikov N.A., Mekler K.I., Nikishin A.V., Polosatkin S.V., Rovenskikh A.F., Sidorov E.N. and Skovorodin D.I. // Nucl. Fusion. 2022. V. 62. Р. 086003. https://DOI.org/10.1088/1741-4326/ac69fa
  11. Akhmetov T.D., Davydenko V.I., Ivanov A.A., Murakhtin S.V. // Plasma Physics and Technology. 2018. V. 5. № 3. P. 125. https://DOI.org/10.14311/ppt.2018.3.125
  12. Sudnikov A.V., Beklemishev A.D., Postupaev V.V., Burdakov A.V., Ivanov I.A., Vasilyeva N.G., Kuklin K.N., Sidorov E.N. // Fusion Engineering Design. 2017. V. 122. P. 85. doi: 10.1016/j.fusengdes.2017.09.005
  13. Postupaev V.V., Sudnikov A.V., Beklemishev A.D., Ivanov I.A. // Fusion Eng. Des. 2016. V. 106. Р. 29–33. https://DOI.org/10.1016/j.fusengdes.2016.03.029
  14. Beklemishev A.D. // Fusion Sci. Technol. 2013. V. 63. 1T. P. 355. doi: 10.13182/FST13-A16953
  15. Beklemishev A.D. // Phys. Plasmas. 2015. Р. 103506. doi: 10.1063/1.4932075
  16. Beklemishev A.D. // AIP Conf. Proc. 2016. V. 1771. P. 040006. doi: 10.1063/1.4964191
  17. Sudnikov A.V., Beklemishev A.D., Postupaev V.V., Ivanov I.A., Inzhevatkina A.A., Sklyarov V.F., Burdakov A.V., Kuklin K.N., Rovenskikh A.F., Melnikov N.A. // Plasma and Fusion Res. 2019. V. 14. Р. 2402023. doi: 10.1585/pfr.14.2402023
  18. Sudnikov A.V., Beklemishev A.D., Inzhevatkina A.A., Ivanov I.A., Postupaev V.V., Burdakov A.V., Glinskiy V.V., Kuklin K.N., Rovenskikh A.F., Ustyuzhanin V.O. // Journal of Plasma Physics. 2020. V. 86. № 5. Р. 905860515. doi: 10.1017/S0022377820001245
  19. Sudnikov A.V., Ivanov I.A., Inzhevatkina A.A., Larichkin M.V., Lomov K.A., Postupaev V.V., Tolkachev M.S., Ustyuzhanin V.O. // Journal of Plasma Physics. 2022. V. 88. № 1. Р. 905880102. doi: 10.1017/S0022377821001276
  20. Бурдаков А.В., Поступаев В.В. // Успехи физических наук. 2018. T. 188. С. 651–671.
  21. Burdakov A., Azhannikov A., Astrelin V., Beklemishev A., Burmasov V., Derevyankin G., Ivanenko V., Ivanov I., Ivantsivskiy M., Kandaurov I., Konyukhov V., Kotelnikov I., Kovenya V., Kozlinskaya T., Kuklin K., Kuznetsov A., Lotov K., Timofeev I., Makarov A., Mekler K., Nikolaev V., Popov S., Polosatkin S., Rovenskikh A., Shoshin A., Sinitsky S., Sulyaev Yu., Stepanov V., Trunyov Yu., Vyacheslavov L., Zhukov V. // Fusion Science and Technology. 2007. V. 51. P. 106. doi: 10.13182/FST07-A1327
  22. Инжеваткина А.А., Бурдаков А.В., Иванов И.А., Ломов К.А., Поступаев В.В., Судников А.В., Устюжанин В.О. // Физика плазмы. 2021. Т. 47. № 8. doi: 10.31857/S0367292121080059
  23. Ivanov I., Ustyuzhanin V., Sudnikov A., Inzhevatkina A. // J. Plasma Phys. 2021. V. 87. № 2. Р. 845870201. doi: 10.1017/S0022377821000131
  24. Chung K.S. // Plasma Sourс. Sci. Technol. 2012. V. 21. P. 063001. doi: 10.1088/0963-0252/21/6/063001
  25. Hudis M., Lidsky L. // Journal of Applied Physics. 1970. V. 41. P. 5011. doi: 10.1063/1.1658578
  26. Gosselin J.J., Thakur S.C., Sears S.H., McKee J.S., Scime E.E., Tynan G.R. // Physics of Plasmas. 2016. V. 23. P. 073519. doi: 10.1063/1.4954820

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the SMOLA setup and the used diagnostics: 1 - plasma source, 2 - input expander (holding zone), 3 - transport section, 4 - output expander, 5 - direct solenoid, 6 - screw winding, 7 - plasma jet position correction coils, 8 - limiter, 9 - plasma receiver, 10 - probe assembly: double probe and two emission probes, 11 - Doppler spectrometer, 12 - probe assembly: a Mach probe and two emission probes. The individual coils are shown as rectangles. Thin lines near the axis show the magnetic surface resting on the limiters

Download (257KB)
3. Fig. 2. Configuration of the magnetic field at the leading field in the solenoid of 70 mTl and switched off helical field: red dotted line - mode with a wide jet, green solid line - mode with a narrow jet

Download (39KB)
4. Fig. 3. Distribution of the radial electric field at Z = 2.04 m in different magnetic field configurations: red circle - mode with a wide jet, green square - mode with a narrow jet

Download (65KB)
5. Fig. 4. Plasma density distribution at Z = 2.04 m in different magnetic field configurations: red circle - mode with a wide jet, green square - mode with a narrow jet

Download (57KB)
6. Fig. 5. Plasma density distribution at Z = 2.04 m in the narrow jet regime: red circle - in the direct field, blue triangle - in the helical field

Download (55KB)
7. Fig. 6. Scheme of the Mach probe at the SMOLA facility: 1 - tungsten wire, 2 - ceramic capillary, 3 - sputtered molybdenum electrode, 4 - quartz plate

Download (76KB)
8. Fig. 7. Typical oscillograms of the main signals: a - plasma current; b - voltage applied between the anode and cathode of the plasma source, c - emission probe potential, ion saturation currents of the windward up (thin red line) and leeward down (thick green line) sides in direct (d) and helical (e) magnetic fields

Download (149KB)
9. Fig. 8. Dependence of the flow velocity on the rotation angle of the Mach probe at Z = 2.4 m and r = 1 cm. Red circle - experimentally obtained results, blue dashed line - inscribed trigonometric function

Download (55KB)
10. Fig. 9. Plasma velocity modulus in the direct (red circle) and helical (blue triangle) magnetic fields at Z = 2.4 m

Download (46KB)
11. Fig. 10. Radial dependence of the plasma velocity modulus: red circle - rotating probe at Z = 2.40 m, green square - probe assembly at Z = 2.94 m

Download (55KB)
12. Fig. 11. Radial dependence of the angle between the flux velocity and the leading magnetic field: red circle - rotating probe in Z = 2.4 m, green square - probe assembly in Z = 2.94 m

Download (54KB)
13. Fig. 12. a - radial dependence of the azimuthal plasma velocity in the direct field in the exit expander at Z = 4.34 m; b - radial dependence of the flow velocity in the direct field in the exit expander at Z = 5.3 m

Download (94KB)
14. Fig. 13. Radial distribution of ion saturation currents from the ‘windward’ (uncoloured) and ‘leeward’ (coloured) sides. Blue triangle - helical field, red circle - direct field

Download (59KB)
15. Fig. 14. Radial dependences of the longitudinal component of the flow velocity at Z = 2.94 m. Red circle - straight field, blue square - helical field

Download (50KB)

Copyright (c) 2024 Russian Academy of Sciences