Formation of Extended Tubular Plasma in Argon at Low Pressure and in a Weak Longitudinal Magnetic Field
- Autores: Akishev Y.S.1,2, Bakhtin V.P.1, Buleyko A.B.1, Loza O.T.1, Petryakov A.V.1, Ravaev A.A.1, Fefelova E.A.1
-
Afiliações:
- Troitsk Institute for Innovative and Thermonuclear Research
- National Research Nuclear University “Moscow Engineering Physics Institute”
- Edição: Volume 50, Nº 2 (2024)
- Páginas: 239-254
- Seção: LOW TEMPERATURE PLASMA
- URL: https://ter-arkhiv.ru/0367-2921/article/view/668807
- DOI: https://doi.org/10.31857/S0367292124020084
- EDN: https://elibrary.ru/QVCWZL
- ID: 668807
Citar
Texto integral
Resumo
The results of experimental studies on the formation and subsequent evolution of extended (l = 300 mm) and thin-walled (Δr ≈ 10 mm) tubular (2r ≈ 110 mm) plasma in a weak longitudinal magnetic field (B = 175 G) without the use of a thermionic cathode are presented. The cylindrical chamber in which the tubular plasma was formed was pumped with high purity argon (99.998%) at an average velocity of about 1 m/s at a pressure of P = 10–3– 10–2 Torr. Two methods of creating seed electrons initiating the development of ionization avalanches were used. The difference inherent to these methods has been established in the dynamics of breakdown, completing in the formation of a tubular discharge. In the first of them, a pulsed discharge preceding the high voltage supply of the main discharge created gas preionization in a small area around the sectioned cathodes. In the second method, seed electrons were created in the entire working area of the discharge chamber by an RF discharge with a frequency of 85 kHz and duration of about 1 s. Highspeed shooting with a 4-frame ICCD camera allowed us to establish the dynamics of tubular discharge formation at all its stages. Measurements of the longitudinal and radial discharge current were carried out. The results we obtained showed the possibility of spatial isolation of an extended tubular plasma from the close located metal wall of the discharge chamber by using a weak longitudinal magnetic field.
Palavras-chave
Sobre autores
Yu. Akishev
Troitsk Institute for Innovative and Thermonuclear Research; National Research Nuclear University “Moscow Engineering Physics Institute”
Autor responsável pela correspondência
Email: akishev@triniti.ru
Rússia, Moscow, 108840; Moscow, 115409
V. Bakhtin
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
A. Buleyko
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
O. Loza
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
A. Petryakov
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
A. Ravaev
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
E. Fefelova
Troitsk Institute for Innovative and Thermonuclear Research
Email: akishev@triniti.ru
Rússia, Moscow, 108840
Bibliografia
- Богданкевич Л.С., Кузелев М. В., Рухадзе А. А. // УФН. 1981. T. 133. Вып. 1. С. 3.
- Стрелков П.С. // УФН. 2019. Т. 189. Вып. 5. С. 494.
- Buleyko A.B., Ponomarev A. V., Loza O. T., Ulyanov D. K., Andreev S. E. // Phys. Plasmas. 2021.V. 28. Р. 023303.
- Buleyko A.B., Ponomarev A. V., Loza O. T., Ulyanov D. K., Sharypov K. A., Shunailov S. A., Yalandin M. I. // Phys. Plasmas. 2021. V. 28. Р. 023304.
- Карташов И.Н., Кузелев М. В. // Физика плазмы. 2021. Т. 47. № 6. С. 531.
- Akishev Yu., Karalnik V., Kochetov I., Napartovich A., Trushkin N. // Plasma Sources Sci. Technol. 2014. V. 23. Р. 054013.
- Mesyats G.A., Korolev Y. D. // Usp. Fiz. Nauk. 1986. № 148. P. 101.
- Akishev Yu., Alekseeva T., Karalnik V., Petryakov A. // J. Phys. D: Appl. Phys. 2022. V. 55 145202. doi: 10.1088/1361-6463/ac45af
- Akishev Yu.S., Karal’nik V.B., Petryakov A. V., Ionikn Yu.Z. // Plasma Physics Reports. 2021. V. 47. № 1. P. 60.
- Hagelaar G.J.M., Pitchford L. C. // Plasma Sources Sci. Technol. 2005. V. 14. Р. 722. doi: 10.1088/0963-0252/14/4/011
- Starikovskiy A.Y., Aleksandrov N. L., Shneider M. N. // Plasma Sources Sci. Technol. 2023. V. 32. I. 035005
- Storozhev D.A., Surzhikov S. T. // Journal of Basic and Applied Physics. 2013. V. 2. Iss. 3. P. 141.
- Surzhikov S.T., Shang J. S. // AIAA 2014-2236, 16—20 June 2014, Atlanta, GA. Proc. 45th AIAA Plasmadynamics and Lasers Conf.
- Surzhikov S.T. // Plasma Physics Reports. 2017. V. 43. № 3. P. 363.
- Shen Gao, Shixiu Chen, Zengchao Ji, Wei Tian, Jun Chen. DC // Advances in Mathematical Physics. V. 2017. Article ID9193149. https://doi.org/10.1155/2017/9193149
- Ryakhovskiy A. I., Schmidt A. A., Antonov V. I. // Proc. ISP RAS. 2017. V. 29. Iss. 6. P. 299. doi: 10.15514/ISPRAS-2017-29(6)-17
- Ulanov I.M., Pinaev V. A. // High Temperature. 2014. V. 52. № 1. P. 26.
- Shen Gao, Jianyuan Feng, Wenqi Li, Jihe Cai // Eur. Phys. J. Appl. Phys. 2019. V. 88. P. 30801.
Arquivos suplementares
