Possibilities of Using Active Neutral Particle Diagnostics at the TRT Facility

Capa

Citar

Texto integral

Resumo

The possibilities of using active neutral particle diagnostics for measuring local ion temperatures and isotopic ratio of deuterium-tritium plasma at the tokamak with reactor technologies are considered. Options for positioning the neutral particle analyzer relative to the diagnostic injector are presented. The fluxes of deuterium and tritium atoms escaping out of plasma were simulated in a wide range of plasma densities and temperatures. It is shown that the neutral particle analyzer active diagnostics will make it possible to measure the plasma parameters mentioned with the spatial and time resolutions of ~14 cm and ~0.01—0.1 s, respectively.

Texto integral

Acesso é fechado

Sobre autores

V. Afanasyev

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

A. Melnik

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

M. Mironov

Ioffe Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

A. Navolotsky

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

V. Nesenevich

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

M. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

S. Petrov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

F. Chernyshev

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

R. Shmitov

Ioffe Institute, Russian Academy of Sciences

Email: maxim@npd.ioffe.ru
Rússia, St. Petersburg, 194021

Bibliografia

  1. Красильников А. В., Коновалов С. В., Бондарчук Э. Н., Мазуль И. В., Родин И. Ю., Минеев А. Б., Кузьмин Е. Г., Кавин А.А, Карпов Д. А., Леонов В. М., Хайрутдинов Р. Р., Кукушкин А. С., Портнов Д. В., Иванов А. А., Бельченко Ю. И., Денисов Г. Г. // Физика плазмы. 2021. Т. 47. C. 970. doi: 10.31857/S0367292121110196.
  2. Афанасьев В. И., Гончаров П. Р., Мельник А. Д., Миронов М. И., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Петров С. Я., Чернышев Ф. В. // Физика плазмы. 2022. T. 48. С. 675. doi: 10.31857/S0367292122100031.
  3. Миронов М. И., Чернышев Ф. В., Афанасьев В. И., Мельник А. Д., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Петров С. Я. // Физика плазмы. 2021. T. 47. С. 29. doi: 10.31857/S0367292121010108.
  4. Леонов В. М., Коновалов С. В., Жоголев В. Е., Кавин А. А., Красильников А. В., Куянов А. Ю., Лукаш В. Э., Минеев А. Б., Хайрутдинов Р. Р. // Физика плазмы. 2021. Т. 47. C. 986. doi: 10.31857/S0367292121120040.
  5. Давыденко В. И., Иванов А. А., Ступишин Н. В. // Физика плазмы. 2022. Т. 48. С. 694. doi: 10.31857/S0367292122100080.
  6. Ryutov D. // Phys. Scr. 1992. V. 45 P. 153.
  7. Ballabio L., Gorini G., Kallne J. // Phys. Rev. E. 1997. V. 55 P. 3358.
  8. Afanasyev V. I., Chernyshev F. V., Kislyakov A. I., Kozlovski S. S., Lyublin B. V., Mironov M. I., Melnik A. D., Nesenevich V. G., Petrov M. P., Petrov S. Ya. // Nucl. Instr. Meth. Phys. Res. A. 2010. V. 621. P. 456. doi: 10.1016/j.nima.2010.06.201.
  9. Петров С. Я., Афанасьев В. И., Мельник А. Д., Миронов М. И., Наволоцкий А. С., Несеневич В. Г., Петров М. П., Чернышев Ф. В., Кедров И. В., Кузьмин Е. Г., Люблин Б. В., Козловский С. С., Мокеев А. Н. // ВАНТ Сер. Термоядерный синтез. 2016. Т. 39. № 1. С. 68. doi: 10.21517/0202-3822-2016-1-67-80.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Variants of the relative position of the observation line of the recharge atom analyzer and the injection line of the diagnostic beam at the TRT installation: in the equatorial plane (a); in the vertical plane (b).

Baixar (198KB)
3. Fig. 2. Spatial distribution of donor atoms along the central line of observation of the analyzer for the case of a tangential observation scheme. Beam — the density of atoms of the diagnostic beam; Halo — the density of atoms secondary formed on the beam; Wall — the density of atoms coming from the wall. The dotted line indicates the position of the magnetic axis of the plasma.

Baixar (65KB)
4. Fig. 3. Spatial profiles of luminosity functions of atoms flying out of plasma along the central line of observation of the analyzer: tangential observation scheme (a); vertical observation scheme (b). Dashed lines indicate profiles in the absence of a beam.

Baixar (112KB)
5. Fig. 4. The counting rate of deuterium and tritium atoms in the detector channels of the analyzer for the basic scenario of a TRT discharge: tangential observation scheme (a); vertical observation scheme (b).

Baixar (102KB)
6. Fig. 5. The counting rate of deuterium and tritium atoms in the detector channels of the analyzer for a vertical monitoring scheme in TRT discharges with reduced parameters: Te, i(0) = 5 keV, 〈ne〉 = 1 · 1014 cm−3 (a); Te, i(0) = 5 keV, 〈ne〉 = 0.5 · 1014 cm−3 (b).

Baixar (89KB)
7. Fig. 6. The counting rate of neutralized knock-on ions in the detector channels of the analyzer for the basic scenario of TRT discharge. The observation scheme is tangential.

Baixar (55KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024