The Concept of the MSE Diagnostic at the TRT Tokamak Facility

封面

如何引用文章

全文:

详细

The possibility of carrying out measurements of plasma parameters in a tokamak with reactor technologies (TRT) by means of the technique based on the Stark effect by resolving the spectrum of the split lines of Balmer series emitted by fast hydrogen atoms injected into plasma is analyzed. The code containing the models of emission applicable for the high-temperature tokamak plasma, along with the library of functions for the ray-tracing simulation of geometric optics, was used. Simulation of spectra of active neutral beam emission and plasma emission, both as a result of charge exchange on beam atoms and passive one, taking into account reflections from the plasma facing vessel elements, allowed determining parameters of the diagnostic injector and relative position of the light-collection systems and heating injectors for which the useful and background spectra could be separated. The signal gathered by the detector is simulated. The shape of the visual angle along the line of sight, optical properties of the lens materials, the instrumental function of the spectral device, the sensor characteristics, and statistical noise of the signal are taken into consideration. Based on the obtained results, a preliminary concept of the motional Stark effect (MSE) diagnostic for the tokamak with reactor technologies is proposed.

作者简介

I. Zemtsov

National Research Center Kurchatov Institute; Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: zemtsov_ia@nrcki.ru
ORCID iD: 0000-0001-9519-9750
俄罗斯联邦, Moscow, 123098; Moscow, 105005

V. Neverov

National Research Center Kurchatov Institute

Email: zemtsov_ia@nrcki.ru
俄罗斯联邦, Moscow, 123098

A. Nemets

National Research Center Kurchatov Institute

Email: zemtsov_ia@nrcki.ru
ORCID iD: 0000-0002-3163-7288
俄罗斯联邦, Moscow, 123098

V. Krupin

National Research Center Kurchatov Institute

Email: zemtsov_ia@nrcki.ru
俄罗斯联邦, Moscow, 123098

A. Pshenov

ITER Organization

Email: zemtsov_ia@nrcki.ru
法国, Route de Vinon-sur-Verdon, St. Paul Lez Durance Cedex

V. Davydenko

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: zemtsov_ia@nrcki.ru
俄罗斯联邦, Novosibirsk, 630090

N. Stupishin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: zemtsov_ia@nrcki.ru
俄罗斯联邦, Novosibirsk, 630090

参考

  1. Красильников А. В., Коновалов С. В., Бондарчук Э. Н., Мазуль И. В., Родин И. Ю., Минеев А. Б., Кузьмин Е. Г., Кавин А. А., Карпов Д. А., Леонов В. М., Хайрутдинов Р. Р., Кукушкин А. С., Портнов Д. В., Иванов А. А., Бельченко Ю. И., Денисов Г. Г. // Физика плазмы. 2021. T. 47. № 11. С. 970.
  2. Levinton F. M., Fonck R. J., Gammel G. M., Kaita R., Kugel H. W., Powell E. T., and Roberts D. W. // Physical Review Letters, 1989. V. 63. № 19. Р. 2060.
  3. Крупин В. А., Иванов С. Н., Медведев А. А., Мялтон Т. Б., Стрелков В. С., Чаклин В. А. // Препринт ИАЭ- 5940/7, М.: РНЦ “Курчатовский институт”. 1995. с.
  4. Howard Yung-Hao Yuh, Ph. D Thesis // Massachusetts Institute of Technology, 2005. 271 p.
  5. Howard J., Michael C., von Nessi G. and Thorman A. // Journal of the Korean Physical Society. 2014. V. 65. Р.1257.
  6. Wolf R. C., Bock A., Ford O. P., Reimer R., Burckhart A., Dinklage A., Hobirk J., Howard J., Reich M. and Stober J. // JINST. 2015. V. 10. P10008.
  7. Galushkin Yu.I. // Soviet Astronomy Jorn. 1970. V. 14. № 2. P. 301.
  8. Carr M., Meakins A., Bernert M., David P., Giroud C., Harrison J., Henderson S., Lipschultz B., Reimold F., EUROfusion // Rev. Sci. Instrum. 2018. V. 89. 083506. https://doi.org/10.1063/1.5031087, https://www.cherab.info
  9. Meakins A., Carr M. raysect/source: v0.7.0 Release (Version v0.7.0) — Zenodo, 2020, https://doi.org/10.5281/zenodo.1341346, https://raysect.org
  10. Summers H. P. The ADAS User Manual, version 2.6, 2004, http://www.adas.ac.uk, https://open.adas.ac.uk/
  11. Marchuk O., Ralchenko Yu., Janev R. K., Biel W., Delabie E. and Urnov A. M. // J. Phys. B At. Mol. Opt. Phys., 2009. Vol. 43. № 1.
  12. Von Hellermann M., de Bock M., Marchuk O., Reiter D., Serov S. and Walsh M. // Atoms, 2019. V. 7. P. 30. https://doi.org/10.3390/atoms7010030
  13. Blom A., Jupen C. // Plasma Phys. Control. Fusion.2002. V. 44. P. 1229. https://doi.org/10.1088/0029-5515/55/12/123028.
  14. Kukushkin A. S., Pacher H. D., Kotov V., Pacher G. W., Reiter D. // Fusion Eng. Des. 2011. V. 86. № 12. P. 2865. https://doi.org/10.1016/j.fusengdes.2011.06.009.
  15. Lomanowski B. A., Meigs A. G., Sharples R. M., Stamp M., Guillemaut C. and JET Contributors // Nucl. Fusion. 2015. V. 55. Р. 123028. https://doi.org/10.1088/0029-5515/55/12/123028
  16. Ida T., Ando M., Toraya H. // Journal of Appl. Crystallography. 2000. V. 33. P. 1311. https://doi.org/10.1107/s0021889800010219
  17. Hutchinson I. H. Principles of Plasma Diagnostics / Second Ed., Cambridge University Press, 2002. ISBN: 9780511613630, https://doi.org/10.1017/CBO9780511613630
  18. De Avillez M. A., Breitschwerdt D. // Astron. Astrophys.,2015. V. 580. P. A124.
  19. Carson T. R. // Astron. Astrophys. 1988. V. 189. P. 319.
  20. Pereverzev G. V., Yushmanov P. N. ASTRA — Automated System for TRansport Analysis. Max-Planck-Institut Für Plasmaphysik. IPP-Report, IPP 5/98, February 2002; https://w3.pppl.gov/~hammett/work/2009/Astra_ocr.pdf.
  21. Леонов В. М., Коновалов С. В., Жоголев В. Е., Кавин А. А., Красильников А. В., Куянов А. Ю., Лукаш В. Э., Минеев А. Б., Хайрутдинов Р. Р. // Физика плазмы. 2021. T. 47. № 11. C. 986.
  22. Cook R. L., Torrance K. E. // ACM Transactions on Graphic.1982. V. 1. P. 7. https://doi.org/10.1145/357290.357293
  23. Karhunen J., Carr M., Harrison J. R., Lomanowski B., Balboa I., Carvalho P., Groth M., Huber A., Matthews G. F., Meakins A., Silburn S. and JET Contributors // Rev. Sci. Instrum.2019. V. 90. P. 103504. https://doi.org/10.1063/1.5118885.
  24. Neverov V. S., Khusnutdinov R. I., Alekseev A. G., Carr M., De Bock M., Kukushkin A. B., Lovell J., Meakins A., Pitts R., Polevoi A. R. // Plasma Phys. Control. Fusion. 2020. V. 62. P. 115014. https://doi.org/10.1088/1361-6587/abb53b
  25. Berkner K. H., Pyle R. V., Stearns J. W.// Nucl. Fusion. 1975. V. 15.P. 249.
  26. Stupishin N. V., Deichuli P. P., Ivanov A. A., Abdrashitov A. G., Abdrashitov G. F., Rashenko V. V., Zubarev P. V., Gorbovsky A. I., Mishagin V. V., Kapitonov V. A., Krupin V. A., Tilinin G. N. // Open Magnetic Systems for Plasma Confinement (OS), 2016.
  27. Delabie E., Brix M., Giroud C., Jaspers R. J.E., Marchuk O., O’Mullane M.G., Ralchenko Yu., Surrey E., von Hellermann M. G., Zastrow K. D. // Plasma Phys. Control. Fusion, 2010. V. 52. P. 125008.
  28. Jakubowska K., De Bock M., Jaspers R., von Hellermann M., Shmaenok L. // Rev. Sci. Instrum, 1 October 2004. V. 75. № 10. P. 3475.
  29. René Reimer, Doctoral Thesis // Ernst-Moritz-Arndt-Universität, Mathematisch-Naturwissenschaftliche Fakultät, 16.05.2017.
  30. Klyuchnikov L. A., Krupin V. A., Nurgaliev M. R., Nemets A. R., Zemtsov I. A., Tugarinov S. N., Naumenko N. N. // Rev. Sci. Instrum. 2017. V. 88. № 9. P. 093508. https://doi.org/10.1063/1.5001490
  31. Uzun-Kaymak I. U., Fonck R. J., McKee G. R. // Rev. Sci. Instrum. 2012. V. 83. № 10. 10D526. https://doi.org/10.1063/1.4733548
  32. Holcomb C. T., Makowski M. A., Jayakumar R. J., Allen S. A., Ellis R. M., Geer R., Behne D., Morris K. L., Seppala L. G., Moller J. M. // Rev. Sci. Instrum. 2006. V. 77. № 10. 10E506. https://doi.org/10.1063/1.2235812
  33. Listopad A., Davydenko V., Ivanov A., Mishagin V., Coenen J., Savkin V., Shulzhenko G. and Uhlemann R. // Rev. Sci. Instrum. 2012. V. 83. № 2. 02B707.
  34. Бельченко Ю. И., Бурдаков А. В., Давыденко В. И., Горбовский А. И., Емелев И. С., Иванов А. А., Санин А. Л., Сотников О. З. // Физика плазмы. 2021. T. 47. № 11. С. 1031.
  35. Krupin V., Zemtsov I., Nurgaliev M., Klyuchnikov L., Nemets A., Ivanov A., Stupishin N., Naumenko N. and Tugarinov S // Journal of Instrumentation.2020. V. 15. C02027. https://doi.org/10.1088/1748-0221/15/02/C02027

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024